Plastics that made history – the contribution of conservation science for the history of the Portuguese Plastics Industry

Authors

  • Susana França de Sá Department of Conservation and Restoration and LAQV-REQUIMTE, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus da Caparica, 2829-516, Caparica, Portugal https://orcid.org/0000-0003-2445-9361
  • Sara Marques da Cruz Centro Interuniversitário de História das Ciências e da Tecnologia, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
  • Maria Elvira Callapez Centro Interuniversitário de História das Ciências e da Tecnologia, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
  • Vânia Carvalho Museu de Leiria, Câmara Municipal de Leiria, Largo da República, 2414-006 Leiria, Portugal

DOI:

https://doi.org/10.14568/cp2019017

Keywords:

Historical plastics, Portuguese Industry, History of technology, Infrared spectroscopy, Conservation and restoration

Abstract

The plastic objects from our cultural heritage are material testimonies of our history, technology and industry. Still, in Portugal, there is no museum of plastics, and the collections are spread through private collectors and industries. The research project, "The Triumph of Bakelite – Contributions to a History of Plastics in Portugal", aims at creating this museum. To this end, the research work gave rise to the exhibition, "Plasticity – A History of Plastics in Portugal", in Museu de Leiria in 2019. This study focuses on the contribution of conservation science for the writing of this history and preparation of ca. 150 historical plastic objects for display. Bakelite, melamine, polyethylene, polypropylene, polystyrene and plasticized polyvinyl chloride are just a few examples of the polymers identified by infrared spectroscopy. This identification was crucial to tell the history of the plastics industry in Portugal. Both the spectra and characteristic absorption bands of each polymer are presented.

 

Received: 2019-6-17
Revised: 2019-11-18
Accepted: 2020-1-6
Online: 2020-5-13
Publication: 2020-11-27

Downloads

Download data is not yet available.

References

[1] Lushington, R., Plastics and You. Pan Piper Science Series EP132. A fascinating account of the importance of plastics in the modern world, Pan Books LTD, London (1967).

[2] Callapez, M. E., Os plásticos em Portugal: a origem da indústria transformadora, Editorial Estampa, Lisbon (2000).

[3] Callapez, M. E., História do PVC em Portugal: Cires - Um Caso de Sucesso, Escolar Editora, Lisbon (2010).

[4] Shashoua Y., Conservation of Plastics – materials science, degradation and preservation, Elsevier, Reprinted, Oxford (2009).

[5] Lavédrine, B.; Fournier, A.; Martin, G. (eds.), POPART: Preservation of Plastic Artefacts in Museum Collections, Comité Des Travaux Historiques Et Scientifiques (CTHS), Paris (2012).

[6] Shashoua, Y., ‘Conservation of Plastics: is it possible today?’, in Plastics: Looking at the Future, Learning from the Past, eds. B. Keneghan and L. Egan, Archetype Publications, London (2009) 12–19.

[7] van Oosten, T.; Learner, T., ‘Identification and characterisation of plastic artefacts. Introduction’, in POPART: Preservation of Plastic Artefacts in Museum Collections, eds. B. Lavédrine, A. Fournier, G. Martin, Comité Des Travaux Historiques Et Scientifiques (CTHS), Paris (2012) 29–36.

[8] Picollo, M.; Bartolozzi, G.; Cucci, C.; Galeotti, M.; Marchiafava, V.; Pizzo, B., ‘Comparative Study of Fourier Transform Infrared Spectroscopy in Transmission, Attenuated Total Reflection, and Total Reflection Modes for the Analysis of Plastics in the Cultural Heritage Field’, Applied spectroscopy 68(4) (2014) 389–397, https://doi.org/10.1366/13-07199.

[9] Lazzari, M.; Ledo-Suárez, A.; López, T.; Scalarone, D.; López-Quintela, M. A., ‘Plastic matters: an analytical procedure to evaluate the degradability of contemporary works of art’, Analytical and Bioanalytical Chemistry 399(9) (2011) 2939–2948, https://doi.org/10.1007/s00216-011-4664-5.

[10] Toja, F.; Saviello, D.; Nevin, A.; Comelli, D.; Lazzari, M.; Levi, M.; Toniolo, L., ‘The degradation of poly (vinyl acetate) as a material for design objects: A multi-analytical study of the effect of dibutyl phthalate plasticizer. Part 1’, Polymer Degradation and Stability 97(11) (2012) 2441–2448. https://doi.org/10.1016/j.polymdegradstab.2012.07.018.

[11] Williams, R. S., ‘On-Site Non-Destructive MID-IR Spectroscopy of Plastics in Museum Objects Using a Portable Ftir Spectrometer with Fiber Optic Probe’, MRS Proceedings 462 (1996) 25-30, https://doi.org/10.1557/PROC-462-25.

[12] Saviello, D.; Toniolo, L.; Goidanich, S.; Casadio, F., ‘Non-invasive identification of plastic materials in museum collections with portable FTIR reflectance spectroscopy: Reference database and practical applications’, Microchemical Journal 124 (2016) 868–877, https://doi.org/10.1016/j.microc.2015.07.016

[13] Asensio, R. C.; Moya, M. S. A.; de la Roja, J. M.; Gómez, M., ‘Analytical characterization of polymers used in conservation and restoration by ATR-FTIR spectroscopy’. Analytical and Bioanalytical Chemistry 395(7), (2009) 2081-2096, https://doi.org/10.1007/s00216-009-3201-2.

[14] Noda, I.; Dowrey, A.E.; Haynes, J.L.; Marcott, C., ‘Group frequency assignments for major infrared bands observed in common synthetic polymers’, in Physical Properties of Polymers Handbook, ed. J.E. Mark, Springer Science +Business Media, LLC, New York (2007) 395–406.

[15] Callapez, M. E., ‘Plásticos na sociedade portuguesa rural’, Revista Brasileira de História da Ciência 3(2) (2010) 200–210, https://www.sbhc.org.br/revistahistoria/view?ID_REVISTA_HISTORIA=8 (accessed 2020-1-31).

[16] Matos, A., ‘Zeitgeist- O espírito do tempo: António Garcia, Design e Arquitectura nas décadas de 50–70 do século XX. Depois da obra, o futuro’, Master dissertation, Universidade de Lisboa, Lisbon (2006).

[17] Almeida, V., ‘O Design em Portugal, um Tempo e um Modo. A institucionalização do Design Português entre 1959 e 1974’, PhD dissertation, Universidade de Lisboa, Lisbon (2009).

[18] Pedroso, G., ‘Mudança: O Mobiliário Português da Manufactura ao Processo Industrial’, Convergências 12(3) (2009), http://convergencias.esart.ipcb.pt/?p=article&id=43 (accessed 2020-1-31).

[19] Coelho, J. D., Génese e Expansão da Indústria de Plásticos no concelho de Leiria, Câmara Municipal de Leiria, Leiria (2001).

[20] Gomes, N., Indústria Portuguesa de moldes para plásticos. Contributos para a sua história, Edição de autor (2015).

[21] CETEL – Centro de Estudos Técnico-Económicos, Plásticos: revista da indústria de matérias plásticas 23 (1974).

[22] Willbourn, A. H., ‘O futuro dos termoplásticos nos países de economia de mercado’, Plásticos: revista da indústria de matérias plásticas 27 (1978).

[23] Lains, P.; Miranda, S.M.; Costa, L.F., História económica de Portugal, 1143-2010, A Esfera dos Livros, Lisboa (2011).

[24] Bhutto, A. A.; Vesely, D.; Gabrys, B. J., ‘Miscibility and interactions in polystyrene and sodium sulfonated polystyrene with poly (vinyl methyl ether) PVME blends. Part II. FTIR’, Polymer 44(21) (2003) 6627-6631, https://doi.org/10.1016/j.polymer.2003.08.005.

[25] Gulmine, J. V.; Janissek, P. R.; Heise, H. M.; Akcelrud, L., ‘Polyethylene characterization by FTIR’, Polymer Testing 21(5) (2002) 557-563, https://doi.org/10.1016/S0142-9418(01)00124-6.

[26] Budevska, B. O.; Manning, C. J.; Griffiths, P. R.; Roginski, R. T., ‘Step-scan Fourier transform infrared study on the effect of dynamic strain on isotactic polypropylene’, Applied spectroscopy 47(11) (1993) 1843-1851, https://doi.org/10.1366/0003702934065920.

[27] Părpăriţă, E.; Darie, R. N.; Popescu, C. M.; Uddin, M. A.; Vasile, C., ‘Structure–morphology–mechanical properties relationship of some polypropylene/lignocellulosic composites’, Materials & Design (1980-2015) 56 (2014) 763-772, https://doi.org/10.1016/j.matdes.2013.12.033.

[28] Feng, Y.; Wang, B.; Wang, F.; Zhao, Y.; Liu, C.; Chen, J.; Shen, C., ‘Thermal degradation mechanism and kinetics of polycarbonate/silica nanocomposites’, Polymer degradation and stability 107 (2014) 129-138, https://doi.org/10.1016/j.polymdegradstab.2014.05.012.

[29] Huang, X.; Ouyang, X.; Ning, F.; Wang, J., ‘Mechanistic study on flame retardance of polycarbonate with a small amount of potassium perfluorobutane sulfonate by TGA–FTIR/XPS’, Polymer degradation and stability 91(3) (2006) 606-613, https://doi.org/10.1016/j.polymdegradstab.2005.02.028.

[30] Song, L.; He, Q.; Hu, Y.; Chen, H; Liu, L., ‘Study on thermal degradation and combustion behaviors of PC/POSS hybrids’, Polymer Degradation and Stability 93(3) (2008) 627-639, https://doi.org/10.1016/j.polymdegradstab.2008.01.014.

[31] Asensio, R. C.; Moya, M. S. A.; de la Roja, J. M.; Gómez, M., ‘Analytical characterization of polymers used in conservation and restoration by ATR-FTIR spectroscopy’, Analytical and bioanalytical chemistry 395(7) (2009) 2081-2096, https://doi.org/10.1007/s00216-009-3201-2.

[32] Ramesh, S.; Leen, K. H.; Kumutha, K.; Arof, A. K., ‘FTIR studies of PVC/PMMA blend based polymer electrolytes’, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 66(4-5) (2007) 1237-1242, https://doi.org/10.1016/j.saa.2006.06.012.

[33] Tabb, D. L.; Koenig, J. L., ‘Fourier transform infrared study of plasticized and unplasticized poly(vinyl chloride)’, Macromolecules 8(6), (1975) 929-934, https://doi.org/10.1021/ma60048a043.

[34] Theodorou, M.; Jasse, B., ‘Fourier‐transform infrared study of conformational changes in plasticized poly (vinyl chloride)’, Journal of Polymer Science: Polymer Physics Edition 21(11) (1983) 2263-2274, https://doi.org/10.1002/pol.1983.180211104.

[35] Beltran, M.; Marcilla, A., ‘Fourier transform infrared spectroscopy applied to the study of PVC decomposition’, European polymer journal 33(7) (1997) 1135-1142, https://doi.org/10.1016/S0014-3057(97)00001-3.

[36] Noda, I.; Dowrey, A.E.; Haynes, J.L.; Marcott, C., ‘Group frequency assignments for major infrared bands observed in common synthetic polymers’, in Physical Properties of Polymers Handbook, ed. J. E. Mark, Springer Science + Business Media, LLC, New York (2007) 395–406.

[37] Kim, S.; Kim, H. J., ‘Study of miscibility of melamine-formaldehyde resin and poly (vinyl acetate) blends for use as adhesives in engineered flooring’, Journal of adhesion science and technology 20(2-3) (2006) 209-219, https://doi.org/10.1163/156856106775897739.

[38] Wang, D.; Zhang, X.; Luo, S.; Li, S., ‘Preparation and property analysis of melamine formaldehyde foam’, Advances in Materials Physics and Chemistry 2(4) (2012) 63-67, doi:10.4236/ampc.2012.24B018.

[39] Mircescu, N. E.; Oltean, M.; Chiş, V.; Leopold, N., ‘FTIR, FT-Raman, SERS and DFT study on melamine’, Vibrational Spectroscopy 62 (2012) 165-171, https://doi.org/10.1016/j.vibspec.2012.04.008.

[40] Samaržija-Jovanović, S.; Jovanović, V.; Konstantinović, S.; Marković, G.; Marinović-Cincović, M., ‘Thermal behavior of modified urea–formaldehyde resins’, Journal of thermal analysis and calorimetry 104(3) (2011) 1159-1166, https://doi.org/10.1007/s10973-010-1143-8.

[41] Poljansek, I.; Krajnc, M., ‘Characterization of phenol-formaldehyde prepolymer resins by in line FT-IR spectroscopy’, Acta Chimica Slovenica 52(3) (2005) 238-244, http://acta-arhiv.chem-soc.si/52/52-3-238.pdf (accessed 2020-1-31).

[42] Zhao, Y.; Yan, N.; Feng, M. W., ‘Thermal degradation characteristics of phenol–formaldehyde resins derived from beetle infested pine barks’, Thermochimica Acta 555 (2013) 46-52, https://doi.org/10.1016/j.tca.2012.12.002.

[43] Chen, Y.; Chen, Z.; Xiao, S.; Liu, H., ‘A novel thermal degradation mechanism of phenol–formaldehyde type resins’, Thermochimica Acta 476(1-2) (2008) 39-43, https://doi.org/10.1016/j.tca.2008.04.013.

[44] Popović, M.; Budinski-Simendic, J.; Miljkovic, J.; Pavlicevic, J.; Ristic, I., ‘Curing characteristics of low emission urea-formaldehyde adhesive in the presence of wood’, Wood Research 56(4) (2011) 589-600, https://pdfs.semanticscholar.org/8a2f/cbf3aaea2979bea90144bbfe36f997ef16b6.pdf (accessed 2020-1-31).

[45] Li, Y.; Zhou, T.; Chen, Z.; Hui, J.; Li, L.; Zhang, A., ‘Non-isothermal crystallization process of polyoxymethylene studied by two-dimensional correlation infrared spectroscopy’, Polymer 52(9) (2011) 2059-2069, https://doi.org/10.1016/j.polymer.2011.03.007.

[46] Busca, G.; Lamotte, J.; Lavalley, J. C.; Lorenzelli, V., ‘FT-IR study of the adsorption and transformation of formaldehyde on oxide surfaces’, Journal of the American Chemical Society 109(17) (1987) 5197-5202, https://doi.org/10.1021/ja00251a025.

[47] Dannoux, A.; Esnouf, S.; Begue, J.; Amekraz, B.; Moulin, C., ‘Degradation kinetics of poly (ether-urethane) Estane® induced by electron irradiation’, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 236(1-4) (2005) 488-494, https://doi.org/10.1016/j.nimb.2005.04.025.

[48] Yilgör, I.; Yilgör, E.; Wilkes, G. L., ‘Critical parameters in designing segmented polyurethanes and their effect on morphology and properties: A comprehensive review’, Polymer 58 (2015) A1-A36, https://doi.org/10.1016/j.polymer.2014.12.014.

[49] Li, C.; Liu, J.; Li, J.; Shen, F.; Huang, Q.; Xu, H., ‘Studies of 4,4′-diphenylmethane diisocyanate (MDI)/1,4-butanediol (BDO) based TPUs by in situ and moving-window two-dimensional correlation infrared spectroscopy: Understanding of multiple DSC endotherms from intermolecular interactions and motions level’, Polymer 53(23) (2012) 5423–5435, https://doi.org/10.1016/j.polymer.2012.09.030.

[50] Priester, R. D.; Mcclusky, J. V.; O’Neill, R. E.; Turner, R. B.; Harthcock, M.; Davis, B. L., ‘FT-IR-A Probe into the Reaction Kinetics and Morphology Development of Urethane Foams’, Journal of Cellular Plastics 26(4) (1990) 346–367, https://doi.org/10.1177/0021955X9002600405.

[51] Guignot, C.; Betz, N.; Legendre, B.; Le Moel, A.; Yagoubi, N., ‘Degradation of segmented poly(etherurethane) Tecoflex® induced by electron beam irradiation: Characterization and evaluation’, Nuclear Instruments and Methods in Physics Research Section B Beam Interactions with Materials and Atoms 185(1) (2001) 100–107, https://doi.org/10.1016/S0168-583X(01)00850-3.

[52] Barud, H. S.; de Araújo Júnior, A. M.; Santos, D. B.; de Assunção, R. M.; Meireles, C. S.; Cerqueira, D. A.; Filho, G. R.; Ribeiro, C. A.; Messaddeq, Y.; Ribeiro, S. J., ‘Thermal behavior of cellulose acetate produced from homogeneous acetylation of bacterial cellulose’, Thermochimica Acta 471(1-2) (2008) 61-69, https://doi.org/10.1016/j.tca.2008.02.009.

[53] Maria da Conceição, C. L.; de Alencar, A. E. V.; Mazzeto, S. E.; de A Soares, S., ‘The effect of additives on the thermal degradation of cellulose acetate’, Polymer Degradation and Stability 80(1) (2003) 149-155, https://doi.org/10.1016/S0141-3910(02)00396-8.

[54] Murphy, J., (ed.), Additives for plastics handbook, 4th ed., Elsevier, Oxford (2001).

[55] Shashoua, Y.; Segel, K.; van Oosten, T.; Lagana, A.; Keneghan, B.; Barabant, G.; Bollard, C.; Kuperholc, S., ‘Wiping away the dirt-a safe option for plastics?’, in ICOM-CC Lisbon 2011: preprints 19–23 September, Lisbon (2011).

[56] Shashoua, Y.; Segel, K., ‘Cleaning plastics in museums’, Meddelelser om konservering 2 (2013) 3-12, https://docplayer.dk/19591938-Meddelelser-om-konservering.html (accessed 2020-1-31).

[57] Muñoz, C. M.; Egsgaard, H.; Landaluze, J. S.; Dietz, C., ‘A model approach for finding cleaning solutions for plasticized poly (vinyl chloride) surfaces of collections objects’, Journal of the American Institute for Conservation 53(4) (2014), 236-251. https://doi.org/10.1179/0197136014Z.00000000040.

Downloads

Published

2020-11-27

How to Cite

França de Sá, S., Marques da Cruz, S., Callapez, M. E., & Carvalho, V. (2020). Plastics that made history – the contribution of conservation science for the history of the Portuguese Plastics Industry. Conservar Património, 35, 85–100. https://doi.org/10.14568/cp2019017

Issue

Section

Articles

Most read articles by the same author(s)