Soldadinhos de plástico, uma batalha perdida? – uma perspetiva analítica
DOI:
https://doi.org/10.14568/cp2020002Palavras-chave:
Artefactos plásticos, Estudo multi-analítico, Acetato de celulose, Fosfato de trifenilo, Ftalato de dimetiloResumo
A preservação e a conservação de coleções em museus requer o conhecimento dos seus materiais constituintes. O uso de variadas técnicas instrumentais pode fornecer resultados complementares sobre a composição e estrutura destes materiais. Um conjunto de soldadinhos de plástico (de meados do século XX) do Museu Militar do Porto apresentava um processo de deterioração acelerado. Para melhor compreender essa deterioração, os presentes autores utilizaram uma abordagem multi analítica. A micromorfologia dos objectos foi caracterizada através de microscopia estereoscópica e microscopia eletrónica de varrimento de pressão variável (VP-SEM-EDS), o polímero e seus aditivos foram identificados por espectroscopia de infravermelho com transformada de Fourier com reflexão total atenuada (ATR-FTIR) e ressonância magnética nuclear (1H e 13C RMN), respectivamente, e os produtos de degradação com estrutura cristalina foram identificados por microdifração de raios X (Micro-XRD). O polímero que contitui os soldadinhos foi identificado como acetato de celulose, tendo fosfato de trifenilo e ftalato de dimetilo como principais aditivos, e as eflorescências cristalinas foram idenficadas como fosfato de trifenilo. Esta metodologia mostrou-se adequada para uma caracterização detalhada de artefactos de plástico em ambiente museológico.
Downloads
Referências
[1] Brydson, J. Plastics materials, 7th Ed., Elsevier, Butterworth-Heinemann, Oxford (1999) ISBN: 9780750641326.
[2] Wypych, G., Handbook of Plasticizers, 2nd Ed., ChemTec Publishing, Ontario, Canada, (2012) ISBN: 978-1-895198-97-3.
[3] Rychlý, J.; Matisová-Rychlá, L.; Csomorová, K., ‘Degradation of plastics from the ResinKit as a model for the selection of polymers for artworks. Assessment by nonisothermal thermogravimetric analysis and chemiluminometry’, Polymer Degradation and Stability 102(1) (2014) 105-111, https://doi.org/10.1016/j.polymdegradstab.2014.01.033.
[4] Madden, O.; Learner, T., ‘Preserving plastics’, The GCI Newsletter 29 (2014) 4-9.
[5] Keneghan, B., ‘Damage limitation’, Materials World 19 (2010) 24-25.
[6] Pangallo, D.; Chovanová, K.; Šimonovičová, A.; Ferianc, P., ‘Investigation of microbial community isolated from indoor artworks and air environment: identification, biodegradative abilities, and DNA typing’, Canadian Journal of Microbiology 55(3) (2009) 277-287 https://doi.org/10.1139/w08-136.
[7] Rosado, T.; Martins, M.R.; Pires, M.; Mirão, J.; Candeias, A.; Caldeira, A.T., ‘Enzymatic monitorization of mural paintings biodegradation and biodeterioration’, International Journal of Conservation Science, 4 (Spe. Issue) (2013) 603-612.
[8] Montanari, M.; Melloni, V.; Pinzari, F.; Innocenti, G., ‘Fungal biodeterioration of historical library materials stored in Compactus movable shelves’, International Biodeterioration & Biodegradation 75 (2012) 83-88 https://doi.org/10.1016/j.ibiod.2012.03.011.
[9] Manso, M.; Cardeira, A. M.; Silva, M.; Gac, A.; Pessanha, S.; Guerra, M.; Caldeira, A. T.; Candeias, A.; Carvalho, M. L., ‘The mysterious halos in iron gall ink manuscripts: an analytical explanation’ Applied Physics A 118(3) (2015) 1107-1111 https://doi.org/10.1007/s00339-014-8924-z.
[10] Latini, G., ‘Potential hazards of exposure to Di-(2-Ethylhexyl)-Phthalate in babies’, Biology of the Neonate 78(4) (2000) 269–276 https://doi.org/10.1159/000014278.
[11] Hill, S.; Shaw, B.; Wu, H., ‘The clinical effects of plasticizers, antioxidants, and other contaminants in medical polyvinylchloride tubing during respiratory and non-respiratory exposure’ Clinica Chimica Acta 304(1-2) (2001) 1–8 https://doi.org/10.1016/s0009-8981(00)00411-3.
[12] Brockway, R., Safe handling of plastics. Eco Exchange (newsletter of Smithsonian Institution Green Team) 4 (2009) 1-4.
[13] Sonnenschein, C.; Soto A., ‘An updated review of environmental estrogen and androgen mimics and antagonists’, The Journal of Steroid Biochemistry and Molecular Biology 65(1-6) (1998) 143-150 https://doi.org/10.1016/S0960-0760(98)00027-2.
[14] Pourmortazavi, S.; Hosseini, S.; Rahimi, N.; Hajimirsadeghi, S.; Momenian, H., ‘Effect of nitrate content on thermal decomposition of nitrocellulose’, Journal of Hazardous Materials 162(2-3) (2009) 1141-1144 https://doi.org/10.1016/j.jhazmat.2008.05.161.
[15] Rong, L.; Binke, N.; Yuan, W.; Zhengquan, Y.; Rongzu, H., ‘Estimation of the critical temperature of thermal explosion for the highly nitrated nitrocellulose using non-isothermal DSC’, Journal of Thermal Analysis and Calorimetry 58(2) (1999) 369-373 https://doi.org/10.1023/A:1010155221958.
[16] Binke, N.; Rong, L.; Zhengqua, Y.; Yuan, W.; Pu, Y.; Rongzu, H.; Qingsen, Y., ‘Studies on the kinetics of the first order autocatalytic decomposition reaction of highly nitrated nitrocellulose’, Journal of Thermal Analysis and Calorimetry 58(2) (1999) 403-411 https://doi.org/10.1023/A:1010163423775.
[17] Knotková-Cermákova, D.; Vlcková, J., ‘Corrosive effect of plastics, rubber and wood on metals in confined spaces’, British Corrosion Journal 6(1) (1971) 17-22 https://doi.org/10.1179/000705971798324134.
[18] Lattuati-Derieux, A.; Egasse, C.; Thao-Heu, S.; Balcar, N.; Barabant, G.; Lavédrine, B., ‘What do plastics emit? HS-SPME and GC/MS analyses of new standard plastics and plastic objects in museum collections’, Journal of Cultural Heritage 14(3) (2013) 238-247 https://doi.org/10.1016/j.culher.2012.06.005.
[19] Larkin, N.; Blades, N.; Makridou, E., ‘Investigation of volatile organic compounds associated with polyethylene and polypropylene containers used for conservation storage’, The Conservator 24(1) (2000) 41-51 https://doi.org/10.1080/01410096.2000.9995149.
[20] Shashoua, Y., Conservation of plastics: materials science, degradation and preservation, Butterworth-Heinemann, Oxford (2008) https://doi.org/10.4324/9780080878782.
[21] Šuštar, V.; Kolar, J.; Lusa, L.; Learner, T.; Schilling, M.; Rivenc, R.; Khanjian, H.; Koleša, D., ‘Identification of historical polymers using Near-Infrared Spectroscopy’, Polymer Degradation and Stability 107 (2014) 341-347 https://doi.org/10.1016/j.polymdegradstab.2013.12.035.
[22] Schilling, M.; Bouchard, M.; Khanjian, H.; Learner, T.; Phenix, A.; Rivenc, R., ‘Application of Chemical and Thermal Analysis Methods for Studying Cellulose Ester Plastics’, Accounts of Chemical Research 43(6) (2010) 888-896 https://doi.org/10.1021/ar1000132.
[23] Stuart, B., Analytical Techniques in the Sciences: Polymer Analysis, Wiley, Chichester (2007) https://doi.org/10.1002/9780470511343.
[24] Learner, T., ‘The analysis of synthetic paints by pyrolysis gas chromatography, mass spectrometry (PyGCMS)’, Studies in Conservation 46(4) (2001) 225-241 https://doi.org/10.1179/sic.2001.46.4.225.
[25] Pereira, A.; Candeias, A.; Cardoso, A.; Rodrigues, D.; Vandenabeele, P.; Caldeira, A. T., ‘Non-invasive methodology to identify plastic objects in museum environment - a novel approach’, Microchemical Journal 124 (2016) 846-855 https://doi.org/10.1016/j.microc.2015.07.027.
[26] Pereira, A.; Caldeira, A. T.; Maduro, B.; Vandenabeele, P.; Candeias, A., ‘Tortoiseshell or Polymer? Spectroscopic Analysis to Redefine a Purported Tortoiseshell Box with Gold Decorations as a Plastic Box with Brass’, Applied Spectroscopy 70(1) (2016) 68–75 https://doi.org/10.1177/0003702815615344.
[27] Puls, J.; Wilson, S.; Hölter, D., Degradation of cellulose acetate-based materials: a review. Journal of Polymers and the Environment. 19 (2011) 152 -165 https://link.springer.com/article/10.1007/s10924-010-0258-0.
[28] McGath, M., Investigation of Deterioration Mechanisms of Cellulose Acetate Compounded with Triphenyl Phosphate, Ph.D. Thesis, Department of Materials Science and Engineering, The University of Arizona, 2012.
[29] Littlejohn, D.; Pethrick, R.; Quye, A.; Ballany, J., ‘Investigation of the degradation of cellulose acetate museum artefacts’, Polymer Degradation and Stability 98(1) (2013) 416-424 https://doi.org/10.1016/j.polymdegradstab.2012.08.023.
[30] May, E.; Jones, M., Conservation Science: Heritage Materials, 1st Ed., Royal Society of Chemistry, Cambridge (2006) https://doi.org/10.1039/9781847557629.
[31] Silverstein, R.; Webster, F.; Kiemle, D., Spectrometric Identification of Organic Compounds, 8th Ed, John Wiley and Sons, New York (2014) ISBN: 978-0-470-61637-6.
[32] Spectral Database for Organic Compounds, SDBS, https://sdbs.db.aist.go.jp/ (acesso em 2019-12-10).
[33] Tsang, J.;Madden, O., Coughlin, M.; Maiorana, A.; Watson, J.; Little, N.; Speakman, R. Degradation of 'Lumarith' Cellulose Acetate: Examination and Chemical Analysis of a Salesman’s Sample Kit, Studies in Conservation, 54 (2) (2009) 90-105 https://www.tandfonline.com/doi/abs/10.1179/sic.2009.54.2.90.
Downloads
Publicado
Como Citar
Edição
Secção
Licença
O presente trabalho é distribuído nos termos da Licença Creative Commons (CC BY-NC 4.0) que permite a utilização, partilha e reprodução para fins não comerciais e sem modificações, desde que o autor e fonte original sejam citados.
O Copyright permanece com os autores.