The challenge of cellulose nitrate-coated fabrics: molecular characterization of celluloid detachable collars and Fabrikoid

Authors

  • Artur Neves Centro Interuniversitário de História das Ciências e da Tecnologia (CIUHCT), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisbon 1749-016, Portugal; Department of Conservation and Restoration, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus Caparica, Monte de Caparica 2829-516, Portugal https://orcid.org/0000-0002-4491-9217
  • Joana Tomás Ferreira Department of Conservation and Restoration, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus Caparica, Monte de Caparica 2829-516, Portugal; LAQV-REQUIMTE, NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal https://orcid.org/0000-0002-2961-1468
  • Robert Friedel Department of History, University of Maryland, 2115 Francis Scott Key Hall, College Park, Maryland 20742, USA https://orcid.org/0009-0001-4769-0868
  • Maria Elvira Callapez Centro Interuniversitário de História das Ciências e da Tecnologia (CIUHCT), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisbon 1749-016, Portugal https://orcid.org/0000-0003-2461-363X

DOI:

https://doi.org/10.14568/cp34829

Keywords:

Cellulose nitrate, Castor oil, Coated fabrics, Material culture, Cultural heritage, Conservation

Abstract

In the 19th century, significant linen and leather imitation products were invented using cellulose nitrate-coated fabrics, including celluloid detachable collars and Fabrikoid artificial leather, now preserved in the Hagley Museum and Library, USA. Using optical microscopy, µRaman, and µFourier Transformed Infrared spectroscopies, this study highlights the need for characterizing the heterogeneity of these materials at the microscale. While the detachable collars have well-preserved fabric coatings composed of cellulose nitrate, camphor, anatase (TiO2), and carbon-based particles, Fabrikoid’s pigmented cellulose nitrate-castor oil systems show problems. Our molecular data align with a 1922 report on Fabrikoid degradation, revealing free fatty acids and carboxylates formed due to oil oxidation. This is concerning as these materials were used until the 1960s, demonstrated by the analysis of objects from the National Museum of Costumes in Portugal. Future studies should address the compatibility of cellulose nitrate with fatty acids and the reactivity of additives in these systems.

Downloads

Download data is not yet available.

References

Bussiere, P. O.; Gardette, J. L.; Therias, S., ‘Photodegradation of celluloid used in museum artifacts’, Polymer Degradation and Stability 107 (2014) 246-254, https://doi.org/10.1016/j.polymdegradstab.2014.02.022.

Berthumeyrie, S.; Collin, S.; Bussiere, P. O.; Therias, S., ‘Photooxidation of cellulose nitrate: New insights into degradation mechanisms’, Journal of Hazardous Materials 272 (2014) 137-147, https://doi.org/10.1016/j.jhazmat.2014.02.039.

Shashoua, Y., Conservation of Plastics: materials science, degradation and preservation, Elsevier, Oxford (2008).

Derrick, M.; Stulik, D., ‘Deterioration of Cellulose Nitrate Sculptures Made by Gabo and Pevsner’, in Procedings of a conference symposium – Saving the twentieth century, ed. D. W. Grattan, Canadian Conservation Institute, Ottawa (1993) 95-102.

Paris, C.; Coupry, C., ‘Fourier transform Raman spectroscopic study of the first cellulose-based artificial materials in heritage’, Journal of Raman Spectroscopy 36 (2005) 77-82, https://doi.org/10.1002/jrs.1288.

Sutherland, K.; Schwarzinger, C.; Price, B. A., ‘The application of pyrolysis gas chromatography mass spectrometry for the identification of degraded early plastics in a sculpture by Naum Gabo’, Journal of Analytical and Applied Pyrolysis 94 (2012) 202-208, https://doi.org/10.1016/j.jaap.2011.12.016.

Lattuati-Derieux, A.; Egasse, C.; Thao-Heu, S.; Balcar, N.; Barabant, G.; Lavédrine, B., ‘What do plastics emit? HS-SPME-GC/MS analyses of new standard plastics and plastic objects in museum collections’, Journal of Cultural Heritage 14 (2013) 238-247, https://doi.org/10.1016/j.culher.2012.06.005.

Salvant, J.; Sutherland, K.; Barten, J.; Stringari, C.; Casadio, F.; Walton, M., ‘Two Làszló Moholy-Nagy paintings on Trolit: insights into the condition of early cellulose nitrate plastic’, e-Preservation Science 13 (2016) 15-22.

Mazurek, J.; Laganà, A.; Dion, V.; Etyemez, S.; Carta, C.; Schilling, M. R., ‘Investigation of cellulose nitrate and cellulose acetate plastics in museum collections using ion chromatography and size exclusion chromatography’, Journal of Cultural Heritage 35 (2019) 263-270, https://doi.org/10.1016/j.culher.2018.05.011.

Neves, A.; Friedel, R.; Melo, M. J.; Callapez, M. E.; Vicenzi, E. P.; Lam, T., ‘Best billiard ball in the 19th century: composite materials made of celluloid and bone as substitutes for ivory’, PNAS Nexus 2 (2023) 1-11, https://doi.org/10.1093/pnasnexus/pgad360.

Elsässer, C.; Micheluz, A.; Pamplona, M.; Kavda, S.; Montag, P., ‘Selection of thermal, spectroscopic, spectrometric, and chromatographic methods for characterizing historical celluloid’, Journal of Applied Polymer Science 138 (2021) e50477, https://doi.org/10.1002/app.50477.

Neves, A.; Friedel, R.; Callapez, M. E.; Swank, S. D., ‘Safeguarding our dentistry heritage: a study of the history and conservation of nineteenth–twentieth century dentures’, Heritage Science 11 (2023) 142, https://doi.org/10.1186/s40494-023-00989-2.

Selwitz, C., Cellulose nitrate in conservation, J. Paul Getty Trust, Los Angeles (1988).

Allen, N. S.; Edge, M.; Rorie, C. V.; Jewitt, T. S.; Appleyard, J. H., ‘The degradation and stabilization of historic cellulose acetate/nitrate base motion-picture film’, The Journal of Photographic Science 36 (1988) 103-106, https://doi.org/10.1080/00223638.1988.11736978.

Shashoua, Y.; Bradley, S. M.; Daniels, V. D., ‘Degradation of cellulose nitrate adhesive’, Studies in Conservation 37 (1992) 113-119, https://doi.org/10.2307/1506403.

Ison, N.; Wain, A.; Hoogewerff, J., ‘Economy and fashion: analysing the use of simulated leather upholstery in a nineteenth century Australian coach’, Heritage Science 5 (2017) 9, https://doi.org/10.1186/s40494-017-0122-9.

Jastrzębiowska, J.; Wawrzyk, A.; Uroda, N., ‘Influence analysis of polyvinyl alcohol on the degradation of artificial leather with cellulose nitrate coating originating from a suitcase stored in the collection of the Auschwitz-Birkenau state museum in Oświęcim, Poland’, Materials 16 (2023) 7033, https://doi.org/10.3390/ma16217033.

Worden, E. C., The nitrocellulose industry, vol. II, Constable and Company, London (1911).

Friedel, R., Pioneer plastic: the making and selling of celluloid, The University of Wisconsin Press, Madison (1983).

Meikle, J. L., American plastic: a cultural history, Rutgers University Press, New Brunswick (1997).

Sanborn, R. H.; Kanouse, C. O.; Sanborn, A. A., Improvement in collars and cuffs, U.S Patent 200939 (1878).

Ellis, R.T., ‘Applying “Pyralin” to Cloth’, The DuPont Magazine 28 (1934) 16-17.

Murphy, M. J., ‘Orthopedic manhood: detachable shirt collars and the reconstruction of the white male body in America, ca. 1880–1910’, Dress: The Journal of the Costume Society of America 32 (2005) 75-95, https://doi.org/10.1179/036121105805253099.

Petrov, J., ‘Collared: celluloid, masculinity and class’, Critical Studies in Men’s Fashion 3 (2016) 63-78, https://doi.org/10.1386/csmf.3.2.63_1.

Laver, M., ‘Titanium dioxide whites’, in Artists’ pigments a handbook of their history and characteristics, ed. E. W. FitzHugh, vol. 3, National Gallery of Art, Washington, D. C. (1997) 295-255.

Ogunniyi, D. S., ‘Castor oil: a vital industrial raw material’, Bioresources Technology 97 (2006) 1086-1091, https://doi.org/10.1016/j.biortech.2005.03.028.

Miles, F. D., Cellulose nitrate: the physical chemistry of nitrocellulose, its formation and use, Oliver and Boyd, London (1955).

Kanigel, R., Faux real: genuine leather and 200 years of inspired fakes, University of Pennsylvania Press, Philadelphia (2010).

Wescott, N. P., ‘How coated textiles have served’, The DuPont Magazine 21 (1927) 28-29.

Meikle, J. L., ‘Presenting a new material: from imitation to innovation with Fabrikoid’, The Journal of the Decorative Arts Society 1850 - the Present 19 (1995) 8-15, https://www.jstor.org/stable/41805870.

Rogers, T. H., Artificial leather: the degradation of Fabrikoid, DuPont Fabrikoid Division, Delaware (1922).

Quye, A., ‘Quality matters for historical plastics: the past-making of cellulose nitrates for future preservation’, Cahiers François Viète III (2017) 45-65, https://doi.org/10.4000/cahierscfv.799.

Osmond, G., ‘Zinc soaps: an overview of zinc oxide reactivity and consequences of soap formation in oil-based paintings’, in Metal soaps in art – conservation and research, eds. F. Casadio, K. Keune, P. Noble, A. Van Loon, E. Hendriks, S. A. Centeno, and G. Osmond, Springer, e-book (2019) 25-46, https://doi.org/10.1007/978-3-319-90617-1.

Anon.,‘C. E. Buckley one of youngest industries operating in the city’, Leominster Daily Enterprise, Leominster (21st October 1939) 10, https://leominster.advantage-preservation.com/.

Otero, V.; Sanches, D.; Montagner, C.; Vilarigues, M.; Carlyle, L.; Lopes, J. A.; Melo, M. J., ‘Characterisation of metal carboxylates by Raman and infrared spectroscopy in works of art’, Journal of Raman Spectroscopy 45 (2014) 1197-1206, https://doi.org/10.1002/jrs.4520.

Neves, A.; Angelin, E. M.; Roldão, É.; Melo, M. J., ‘New insights into the degradation mechanism of cellulose nitrate in cinematographic films by Raman microscopy’, Journal of Raman Spectroscopy 50 (2019) 202-212, https://doi.org/10.1002/jrs.5464.

Coccato, A.; Jehlicka, J.; Moens, L.; Vandenabeele, P., ‘Raman spectroscopy for the investigation of carbon-based black pigments’, Journal of Raman Spectroscopy 46 (2015) 1003-1015, https://doi.org/10.1002/jrs.4715.

Ohsaka, T.; Izumi, F.; Fujiki, Y., ‘Raman spectrum of anatase, TiO2’, Journal of Raman Spectroscopy 7 (1978) 321-324, https://doi.org/10.1002/jrs.1250070606.

McHale, J. L.; Knorr, F. J., ‘Photoluminescence and carrier transport in nanocrystalline TiO2’, in Handbook of luminescent semiconductor materials, eds. L. Bergman and J. L. McHale, CRC Press, Boca Raton (2012) 365-389.

Derrick, M. R.; Stulik, D.; Landry, J. M., Infrared spectroscopy in conservation science, The Getty Conservation Institute, Los Angeles (1999).

Van der Weerd, J.; Van Loon, A.; Boon, J. J., ‘FTIR studies of the effects of pigments on the aging of oil’, Studies in Conservation 50 (2005) 3-22, https://doi.org/10.1179/sic.2005.50.1.3.

Omori, K., ‘Infrared diffraction and the far infrared spectra of anhydrous sulfates’, Mineralogical Journal 5 (1968) 334-354, https://doi.org/10.2465/minerj1953.5.334.

Liu, C.; Wang, D.; Zheng, H., ‘In situ Raman spectroscopic study of barite as a pressure gauge using a hydrothermal diamond anvil cell’, Applied Spectroscopy 70 (2016) 347-354, https://doi.org/10.1177/0003702815620556.

Araújo, S. V.; Rocha, B. S.; Luna, F. M. T.; Rola Jr, E. M.; Azevedo, D. C.; Cavalcante Jr, C. L., ‘FTIR assessment of the oxidation process of castor oil FAME submitted to PetroOXY and Rancimat methods’, Fuel Processing Technology 92 (2011) 1152-1155, https://doi.org/10.1016/j.fuproc.2010.12.026.

Osticioli, I.; Mendes, N. F. C.; Nevin, A.; Gil, F. P.; Becucci, M.; Castellucci, E., ‘Analysis of natural and artificial ultramarine blue pigments using laser induced breakdown and pulsed Raman spectroscopy, statistical analysis and light microscopy’, Spectrochimica Acta Part A 73 (2009) 525-531, https://doi.org/10.1016/j.saa.2008.11.028.

Kulesza, P. J.; Malik, M. A.; Denca, A.; Strojek, J., ‘In situ FT-IR/ATR spectroelectrochemistry of Prussian blue in the solid state’, Analytical Chemistry 68 (1996) 2442-2446, https://doi.org/10.1021/ac950380k.

Ospitali, F.; Bersani, D.; Di Lonardo, G.; Lottici, P. P., ‘«Green earths»: vibrational and elemental characterization of glauconites, celadonites and historical pigments’, Journal of Raman Spectroscopy 39 (2008) 1066-1073, https://doi.org/10.1002/jrs.1983.

Anghelone, M.; Jembrih-Simbürger, D.; Schreiner, M., ‘Identification of copper phthalocyanine blue polymorphs in unaged and aged paint systems by means of micro-Raman spectroscopy and Random Forest’, Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy 149 (2015) 419-425, https://doi.org/10.1016/j.saa.2015.04.094.

Otero, V.; Pinto, J. V.; Carlyle, L.; Vilarigues, M.; Cotte, M.; Melo, M. J., ‘Nineteenth century chrome yellow and chrome deep from Winsor & Newton’, Studies in Conservation 62 (2016) 123-149, https://doi.org/10.1080/00393630.2015.1131478.

Castro, K.; Vandenabeele, P.; Rodríguez-Laso, M. D.; Moens, L.; Madariaga, J. M., ‘Micro-Raman analysis of coloured lithographs’, in Analytical and Bioanalytical Chemistry 379 (2004) 674-683, https://doi.org/10.1007/s00216-004-2642-x.

Doll Stroller made of wood. Opening and closing hood, made of green “nappa”, supported by a metal structure (1930s)

Downloads

Published

2024-07-10

How to Cite

Neves, A., Ferreira, J. T., Friedel , R., & Callapez, M. E. (2024). The challenge of cellulose nitrate-coated fabrics: molecular characterization of celluloid detachable collars and Fabrikoid. Conservar Património, 47, 12–27. https://doi.org/10.14568/cp34829

Most read articles by the same author(s)