Non-destructive electrochemical evaluation of corrosion protection systems subjected to accelerated ageing tests: a strategy for the conservation of colonial Mexican metal alloys

Authors

  • Javier Reyes-Trujeque Laboratorio Nacional de Ciencias Para la Investigación y Conservación del Patrimonio Cultural-Centro de Investigación en Corrosión (LANCIC-CICORR), Universidad Autónoma de Campeche, Av. Agustín Melgar s/n, Col. Buenavista, C.P. 24039, San Francisco de Campeche, Cam., México https://orcid.org/0000-0002-8129-5343
  • Luis Román Dzib Pérez Laboratorio Nacional de Ciencias Para la Investigación y Conservación del Patrimonio Cultural-Centro de Investigación en Corrosión (LANCIC-CICORR), Universidad Autónoma de Campeche, Av. Agustín Melgar s/n, Col. Buenavista, C.P. 24039, San Francisco de Campeche, Cam., México https://orcid.org/0000-0002-8335-1142
  • Nora Ariadna Pérez-Castellanos CONACYT-Instituto de Investigaciones Estéticas, Universidad Nacional Autónoma de México, Circuito Mario de la Cueva s/n, Ciudad Universitaria, Ciudad de México. C.P. 04510, México http://orcid.org/0000-0001-5407-9613
  • Armando Arciniega-Corona Coordinación Nacional de Conservación del Patrimonio Cultural-Instituto Nacional de Antropología e Historia, Ex-convento de Churubusco S/N, San Diego Churubusco, Coyoacán, Ciudad de México, C.P. 04120, México https://orcid.org/0000-0001-8544-3465

DOI:

https://doi.org/10.14568/cp26340

Keywords:

Protective coatings, Brass, Cast iron, EIS, FTIR, SEM

Abstract

In this study we used Electrochemical Impedance Spectroscopy (EIS) to assess the protective capacity of different conservation treatments: benzotriazole, tannic acid and a polyurethane coating. They were applied on corroded coupons that replicate colonial Mexican brass and cast-iron alloys which were subjected to an accelerated ageing process under UVB/condensation exposure cycles. Electrochemical analysis was complemented with colorimetric measurements and FTIR analysis for information on the structural level before and after ageing. EIS results indicate that although the inhibitor systems prevent corrosion in early stages of the ageing, after 600 h they degrade, and corrosion products are formed resulting in low protective capacities. The selected polyurethane coating provided high protective capacities measured by EIS and agreed with no chemical degradation registered by FTIR and colour aspect. This investigation was performed with a methodology that can be replicated on site since it is non-destructive and the data can be employed for planning conservation strategies.

Downloads

Download data is not yet available.

References

Watkinson, D., ‘Preservation of metallic cultural heritage’, in Shreir’s Corrosion, 4th ed., vol. 4, ed. R. A. Cottis, Elsevier, London (2010) 3307-3340, https://doi.org/10.1016/B978-044452787-5.00172-4.

Llull-Peñalba, J., ‘Evolución del concepto y de la significación social del patrimonio cultural’, Arte, Individuo y Sociedad 17 (2005) 177-208.

Ávila Mendoza, J.; Genescá Llongueras, J., Más Allá de la Herrumbre, Fondo de Cultura Económica, México (1987).

Hihara, L. H., ‘Electrochemical aspects of corrosion-control coatings’, in Intelligent Coatings for Corrosion Control, ed. A. Tiwari, J. Rawlins and L.H. Hihara, Elsevier, London (2014) 1-15.

Angelini, E.; Grassini, S.; Mombello, D.; Neri, A.; Parvis, M.; Perrone, G., ‘Plasma modified POF sensors for in situ environmental monitoring of museum indoor environments’, Applied Physics a Materials Science and Processing 100(3) (2010) 975-980, https://doi.org/10.1007/s00339-010-5691-3.

Corbellini, S.; Ferraris, F.; Neri, A.; Parvis, M.; Angelini, E.; Grassini, S., ‘Exposure tolerant imaging solution for cultural heritage monitoring’, IEEE Transactions on Instrumentation and Measurement 60(5) (2011) 1691-1698, https://doi.org/10.1109/TIM.2010.2090191.

ICOM-CC, Terminology to characterize the conservation of tangible cultural heritage, New Delhi (2008), http://www.icom-cc.org/54/document/terminology-to-characterize-the-conservation-of-tangible-cultural-heritage-english/?id=368 (accessed 2009-04-18).

Cano, E.; Lafuente, D.; Bastidas, D. M., ‘Use of EIS for the evaluation of the protective properties of coatings for metallic cultural heritage: a review’, Journal of Solid State Electrochemistry 14 (2010) 381-391, https://doi.org/10.1007/s10008-009-0902-6.

Fracassi, F.; d’Agostino, R.; Palumbo, F.; Angelini, E.; Grassini, S.; Rosalbino, F., ‘Application of plasma deposited organosilicon thin films for the corrosion protection of metals’, Surface & Coatings Technology 174-175 (2003) 107–111, https://doi.org/10.1016/S0257-8972(03)00422-5.

Angelini, E.; Grassini, S., ‘Plasma treatments for the cleaning and protection of metallic heritage artefacts’, Corrosion and Conservation of Cultural Heritage Metallic Artefacts 25 (2013) 552–569, https://doi.org/10.1533/9781782421573.5.552.

Palumbo, F.; d’Agostino, R.; Fracassi, F.; Laera, S.; Milella, A.; Angelini, E.; Grassini, S., ‘On low pressure plasma processing for metal protection’, Plasma Processes and Polymers 6(S1) (2009) 684-689, https://doi.org/10.1002/ppap.200931704.

Xu, W.; Han, E.H.; Wang, Z., ‘Effect of tannic acid on corrosion behavior of carbon steel in NaCl solution’, Journal of Materials Science & Technology 35(1) (2019) 64-75, https://doi.org/10.1016/j.jmst.2018.09.001.

Ling Y., Guan Y, Han K. N., ‘Corrosion inhibition of copper with benzotriazole and other organic surfactants’, Corrosion 51(5) (1995) 367-375, https://doi.org/10.5006/1.3293601.

Fateh, A.; Aliofkhazraei, M.; Rezvanian, A. R., ‘Review of corrosive environments for copper and its corrosion inhibitors’, Arabian Journal of Chemistry 13(1) (2020) 481-544, https://doi.org/10.1016/j.arabjc.2017.05.021.

Lei, Y. H.; Sheng, N.; Hyono, A.; Ueda, M.; Ohtsuka, T., ‘Effect of benzotriazole (BTA) addition on Polypyrrole film formation on copper and its corrosion protection’, Progress in Organic Coatings 77(2) (2014) 339-346, https://doi.org/10.1016/j.porgcoat.2013.10.009.

Gopi, D.; Govindaraju, K. M.; Collins, V.; Angelline, D. M.; Kavitha, L., ‘A study on new benzotriazole derivatives as inhibitors on copper corrosion in ground water’, Corrosion Science 51(10) (2009) 2259-2265, https://doi.org/10.1016/j.corsci.2009.06.008.

Qian, B.; Hou, B.; Zheng, M., ‘The inhibition effect of tannic acid on mild steel corrosion in seawater wet/dry cyclic conditions’, Corrosion Science 72 (2013) 1-9, https://doi.org/10.1016/j.corsci.2013.01.040.

Barrero, C. A.; Ocampo, L. M.; Arroyave, C. E., ‘Possible improvements in the action of some rust converters’, Corrosion Science 43(6) (2001) 1003-1018, https://doi.org/10.1016/S0010-938X(00)00139-6.

Saji, V. S., ‘Progress in rust converters’, Progress in Organic Coating 127 (2019) 88-99, https://doi.org/10.1016/j.porgcoat.2018.11.013.

Cotton, J. B., ‘The Control of Surface Reactions on Copper by means of Organic Compounds’, in Proceedings of the 2nd International Congress on Metallic Corrosion, National Association of Corrosion Engineers, New York (1963) 590-596.

Cano, E.; Lafuente, D., ‘Corrosion inhibitors for the preservation of metallic heritage artefacts’, in Corrosion and conservation of cultural heritage metallic artefacts, European Federation of Corrosion series, eds. P. Dillmann, D. Watkinson, E. Angelini and A. Adriaens, WoodHead Publishing, Cambridge (2013) 570-594, https://doi.org/10.1533/9781782421573.5.570.

Dugdale, I.; Cotton, J. B., ‘An electrochemical investigation on the prevention of staining of copper by benzotriazole’, Corrosion Science 3(2) (1963) 69-74, https://doi.org/10.1016/S0010-938X(63)80001-3.

Finšgar, M.; Milošev, I., ‘Inhibition of copper corrosion by 1,2,3-benzotriazole: a review’, Corrosion Science 52(9) (2010) 2737-2749, https://doi.org/10.1016/j.corsci.2010.05.002.

Cotton, J. B.; Scholes, I. R., ‘Benzotriazole and related compounds as corrosion inhibitors for copper’, British Corrosion Journal 2(1) (1967) 1-5, https://doi.org/10.1179/000705967798327235.

Albini, M.; Letardi, P.; Mathys, L.; Brambilla, L.; Schröter, J.; Junier, P.; Joseph, E., ‘Comparison of a bio-based corrosion inhibitor versus benzotriazole on corroded copper surfaces’, Corrosion Science 143(2018) 84-92, https://doi.org/10.1016/j.corsci.2018.08.020.

Bierwagen, G.; Tallman, D.; Li, J.; He, L.; Jeffcoate, C., ‘EIS studies of coated metals in accelerated exposure’, Progress in Organic Coating 46(2) (2003) 149-158, https://doi.org/10.1016/S0300-9440(02)00222-9.

Zhang, Y.; Maxted, J.; Barber, A.; Lowe, C.; Smith, R., ‘The durability of clear polyurethane coil coatings studied by FTIR peak fitting’, Polymer Degradation and Stability 98(2) (2013) 527-534, https://doi.org/10.1016/j.polymdegradstab.2012.12.003.

Grundmeier, G.; Schmidt, W.; Stratmann, M., ‘Corrosion protection by organic coatings: electrochemical mechanism and novel methods of investigation’, Electrochimica Acta 45(15-16) (2000) 2515-2533, https://doi.org/10.1016/S0013-4686(00)00348-0.

Szocinski, M.; Darowicki, K., ‘Local impedance spectra of organic coatings’, Polymer Degradation and Stability 98(1) (2013) 261-265, https://doi.org/10.1016/j.polymdegradstab.2012.10.002.

Zou, F.; Thierry, D., ‘Localized electrochemical impedance spectroscopy for studying the degradation of organic coatings’, Electrochimica Acta 42(20-22) (1997) 3293-3301, https://doi.org/10.1016/S0013-4686(97)00180-1.

Upadhyay, V.; Battocchi, D., ‘Localized electrochemical characterization of organic coatings: a brief review’, Progress in Organic Coatings 99 (2016) 365-377, https://doi.org/10.1016/j.porgcoat.2016.06.012.

Voulgaris, Ch.; Amanatides, E.; Mataras, D.; Grassini, S.; Angelini, E.; Rosalbino, F., ‘RF power and SiOxCyHz deposition efficiency in TEOS/O2 discharges for the corrosion protection of magnesium alloys’, Surface and Coatings Technology 200 (2006) 6618-6622, https://doi.org/10.1016/j.surfcoat.2005.11.058.

Buchheit R. G., ‘Corrosion resistant coatings and paints’, in Handbook of environmental degradation of materials, 2nd ed., ed. M. Kutz, Elsevier, San Diego (2012) 539-568, https://doi.org/10.1016/B978-081551500-5.50020-3.

Bacci, M., ‘UV-VIS-NIR, FT-IR, and FORS spectroscopies’, in Modern Analytical Methods in Art and Archaeology in Chemical Analysis, eds. E. Ciliberto and G. Spoto, Wiley-interscience, New York (2000) 321-362.

Petit, S.; Madejova, J., ‘Fourier Transform Infrared Spectroscopy’, in Handbook of Clay Science, vol 5, eds. F. Bergaya and G. Lagaly, Elsevier, UK (2013) 213-231, https://www.sciencedirect.com/bookseries/developments-in-clay-science/vol/5/suppl/C (accessed 2024-05-09).

Pasto, D. J.; Johnson C. R., Determinación de estructuras orgánicas, Editorial Reverté, Barcelona (1981).

Dutta, A., ‘Fourier Transform Infrared Spectroscopy’, in Spectroscopic methods for nanomaterials characterization, vol 2, eds. S. Thomas, R. Thomas, A. K. Zachariah and R. K. Mishra, Elsevier, Amsterdam (2017) 73-93, https://doi.org/10.1016/B978-0-323-46140-5.00004-2.

Kumar, A.; Khandelwal, M.; Gupta, S. K.; Kumar, V.; Rani, R., ‘Fourier Transform Infrared Spectroscopy: data interpretation and applications in structure elucidation and analysis of small molecules and nanostructures’, in Data processing handbook for complex biological data sources, ed. G. Misra, Elsevier, London (2019) 77-96, https://doi.org/10.1016/B978-0-12-816548-5.00006-X.

Pickering, W. F., Química analítica moderna, Editorial Reverté, Barcelona (1980).

Bittner, R. W.; Hoffmann, H., ‘Surface analysis: infrared spectroscopy’, in Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, 3rd edition, Elsevier Science, Oxford (2019) 1-15, https://doi.org/10.1016/b978-0-12-409547-2.14385-9.

Arano-Recio D., Conservación de cañones de fundición de hierro del periodo colonial, que forman parte del patrimonio cultural de la ciudad de San Francisco de Campeche, Master Dissertation, Department of Marine Science, Universidad Autónoma de Campeche, Campeche (2009).

Arano-Recio D., ‘Proyecto “Restauración de vestigios de artillería”: aspectos sobre la investigación y conservación de cañones con aleación de hierro de la ciudad de San Francisco de Campeche’, Revista Intervención 4(8) (2013) 47-53, http://www.scielo.org.mx/pdf/inter/v4n8/v4n8a6.pdf (accessed in 2024-05-09).

López Garrido, P. H.; González Sánchez, J. A.; Escobar Briones, E., ‘Fouling communities and degradation of archeological metals in the coastal sea of the Southwestern Gulf of Mexico’, Biofouling 31(5) (2015) 405-416, https://doi.org/10.1080/08927014.2015.1048433.

Strandberg, H., ‘Reactions of copper patina compounds - I. Influence of some air pollutants’, Atmospheric Environment 32(20) (1998) 3511-3520, https://doi.org/10.1016/S1352-2310(98)00057-0.

Di Carlo, G.; Giuliani, C.; Riccucci, C.; Pascucci, M.; Messina, E.; Fierro, G.; Lavorgna, M., Ingo, G. M., ‘Artificial patina formation onto copper-based alloys: chloride and sulphate induced corrosion processes’, Applied Surface Science 421(A) (2017) 120-127, https://doi.org/10.1016/j.apsusc.2017.01.080.

ISO 9223:2012. ‘Corrosion of metals and alloys – Corrosivity of atmospheres – classification, determination and estimation’, International Organization for Standarization, ISO Central Secretariat, Geneva 20, Switzerland (2012).

Logan J., ‘Tannic acid coating for rusted iron artifacts’, in Canadian Conservation Institute (CCI) Notes 9/5 (2014), https://www.canada.ca/en/conservation-institute/services/conservation-preservation-publications/canadian-conservation-institute-notes/tannic-acid-rusted-iron-artifacts.html (accessed in 2021-07-09).

ASTM G154-06, ‘Standard practice for operating fluorescent light apparatus for UV exposure of nonmetallic materials’, ASTM International, West Conshohocken, United States.

Marcus, R. T., ‘The measurement of colour’, in Colour for science, art and technology, ed. K. Nassau, Elsevier, Amsterdam (1997) 31-96.

Masi, G.; Esvan, J.; Josse, C.; Chiavari, C.; Bernardi, E.; Martini, C.; Bignozzi, M. C.; Gartner, N.; Kosec, T.; Robbiola, L., ‘Characterization of typical patinas simulating bronze corrosion in outdoor conditions’, Materials Chemistry and Physics 200 (2017) 308-321, https://doi.org/10.1016/j.matchemphys.2017.07.091.

Aziz, S. G.; Elroby, S. A.; Alyoubi, A.; Osman, O. I.; Hilal, R., ‘Experimental and theoretical assignment of the vibrational spectra of triazoles and benzotriazoles. Identification of IR marker bands and electric response properties’, Journal of Molecular Modeling 20(3) (2014) 2078-2093, https://doi.org/10.1007/s00894-014-2078-y.

Shimanouchi, T., ‘Tables of molecular vibrational frequencies’, Consolidated Volume I, National Standard Reference Data System (NSRDS), NSRDS-NBS 39 (1972).

Mohamed, M. A.; Jaafar, J.; Ismail, A. F.; Othman, M. H. D.; Rahman M. A., ‘Fourier Transform Infrared (FTIR) spectroscopy. Membrane characterization’, in Membrane Characterization, eds. N. Hilal, A. F. Ismail, T. Matsuura and D. Oatley-Radcliffe, Elsevier, Amsterdam (2017) 3-29, https://doi.org/10.1016/b978-0-444-63776-5.00001-2.

Jinadasa, M. H.; Jens, K. J.; Øi, L. E.; Halstensen, M., ‘Raman spectroscopy as an online monitoring tool for CO2 capture process: demonstration using a laboratory rig’, Energy Procedia 114 (2017) 1179-1194, https://doi.org/10.1016/j.egypro.2017.03.1282.

Bensebaa, F.; Ellis, T. H., ‘Water at surfaces: what can we learn from vibrational spectroscopy?’, Progress in Surface Science 50(1-4) (1995) 173-185, https://doi.org/10.1016/0079-6816(95)00052-6.

Tranter, G. E.; ‘FTIR spectroscopy of aqueous solutions’, in Encyclopedia of spectroscopy and spectrometry, vol 1, 3rd ed., eds. J. C. Lindon, G. E. Tranter and D. W. Koppenaal, Elsevier, Oxford (2017) 762-769, https://doi.org/10.1016/B978-0-12-409547-2.12157-2.

Hem, J. D., ‘Complexes of ferrous iron with tannic acid’, in Chemistry of iron in natural water, Geological survey water-supply 1459-D (1960) 75-94, https://doi.org/10.3133/wsp1459D.

Borowska, E.; Felis, E., Kalka, J., ‘Oxidation of benzotriazole and benzothiazole in photochemical processes: kinetics and formation of transformation products’, Chemical Engineering Journal 304 (2016) 852-863, https://doi.org/10.1016/j.cej.2016.06.123.

Félix de Castro, P., Síntesis y caracterización de poliuretanos termoplásticos basados en policarbonato dioles. Relación estructura/propiedades, PhD Dissertation, Department of Chemistry-Physic, Valencia University (2012), http://hdl.handle.net/10550/25189.

de Haseth, J. A.; Andrews, J. E.; McClusky, J. V.; Priester, R. D.; Harthcock, M. A.; Davis, B. L., ‘Characterization of Polyurethane foams by mid-Infrared fiber/FT-IR spectrometry’, Applied Spectroscopy 47(2) (1993) 173-179, https://www.osapublishing.org/as/abstract.cfm?URI=as-47-2-173.

Reghunadhan, A.; Thomas, S., ‘Polyurethanes: structure, properties, synthesis, characterization, and applications’, in Polyurethane polymers: blends and interpenetrating polymer networks, eds. S. Thomas, J. Datta, J. T. Haponiuk and A. Reghundahan, Elsevier, Amsterdam (2017) 1-16, https://doi.org/10.1016/B978-0-12-804039-3.00001-4.

Rosu, D.; Rosu, L.; Cascaval, C. N., ‘IR-change and yellowing of polyurethane as a result of UV irradiation’, Polymer Degradation Stability 94(4) (2009) 591-596, https://doi.org/10.1016/j.polymdegradstab.2009.01.013.

Cai, G.; Wang, H.; Jiang, D.; Dong, Z., ‘Degradation of fluorinated polyurethane coating under UVA and salt spray. Part I: corrosion resistance and morphology’, Progress in Organic Coatings 123 (2018) 337-349, https://doi.org/10.1016/j.porgcoat.2018.07.025.

Cai, G.; Zhang, D.; Jiang, D.; Dong, Z., ‘Degradation of fluorinated polyurethane coating under UVA and salt spray. Part II: molecular structures and depth profile’, Progress in Organic Coatings 124 (2018) 25-32, https://doi.org/10.1016/j.porgcoat.2018.07.026.

Hare, C. H., ‘The degradation of coatings by ultraviolet light and electromagnetic radiation’, Journal of Protective Coatings & Linings May (1992) LU-8029.

Wu, H., ‘Highly accelerated UV weathering: when and how to use it’, in Service life prediction of polymers and plastics exposed to outdoor weathering, eds. C. C. White, K. M. White and J. E. Pickett, Elsevier, Oxford (2018) 79-94, https://doi.org/10.1016/B978-0-323-49776-3.00006-4.

Schäfer, S. G.; Annamalai, V. E., ‘Degradation of glass linings and coatings’, Reference Module in Materials Science and Materials Engineering (2016) 1-11, https://doi.org/10.1016/b978-0-12-803581-8.09241-9.

Roberge, P. R., Corrosion engineering – principles and practice, McGraw Hills, New York (2008), https://doi.org/10.1036/0071482431.

Favaro, M.; Mendichi, R.; Ossola, F.; Russo, U.; Simon, S.; Tomasin, P.; Vigato, P. A., ‘Evaluation of polymers for conservation treatments of outdoor exposed Stone monuments. Part I: photo-oxidative weathering’, Polymer Degradation and Stability 91(12) (2006) 3083-3096, https://doi.org/10.1016/j.polymdegradstab.2006.08.012.

Sharma, V. C.; Shankar Lal U.; Singh, T., ‘Method for stabilization of leaded bronzes affected by corrosion of lead’, Studies in Conservation 48(3) (2003) 203-209, https://doi.org/10.1179/sic.2003.48.3.203.

Díaz Martínez S.; García Alonso E., Técnicas metodológicas aplicadas a la conservación-restauración del patrimonio metálico, Ministerio de Cultura, España, (2010) 7-37.

Kumar, V.; Chaudhuri, S. K., ‘Influence of alloying elements and microstructure on the corrosion behaviour of some low alloy steels’, Corrosion Reviews 21(4) (2003) 293-310, https://doi/10.1515/CORRREV.2003.21.4.293/html.

Rendón, J. L.; Valencia, A., ‘Kinetics of structural rust transformation in environments containing chloride and SO2’, Revista de Metalurgia 39(extra) (2003) 9-14, http://dx.doi.org/10.3989/revmetalm.2003.v39.iExtra.1089.

Favre, M.; Landolt, D., ‘The influence of gallic acid on the reduction of rust on painted steel surfaces’, Corrosion Science 34(9) (1993), 1481-1494, https://doi.org/10.1016/0010-938X(93)90243-A.

Keiman, A. C., Propiedades ópticas de polímeros aplicado a pinturas decorativas, Master Dissertation, Department Physical Sciences, Universidad National Autonoma de México, México City (2011).

Saavedra-Torres, M.; Escobar, C. A.; Ocayo, F.; Tielens, F.; Santos, J., ‘1,2,3-Benzotriazole derivates adsorption on Cu(111) surface: A DFT study’, Chemical Physics Letters 689 (2017) 128-134, https://doi.org/10.1016/j.cplett.2017.09.067.

Itagaki, M.; Ono, A.; Watanabe, K.; Katayama, H.; Noda, K., ‘Analysis on organic film degradation by dynamic impedance measurements’, Corrosion Science 48(11) (2006) 3802-3811, https://doi.org/10.1016/j.corsci.2006.01.011.

Touzain, S., ‘Some comments on the use of the EIS phase angle to evaluate organic coating degradation’, Electrochimica Acta 55(21) (2010) 6190-6194, https://doi.org/10.1016/j.electacta.2009.09.045.

Pehkonen, S. O.; Yuan, S., ‘Inorganic-organic hybrid coatings’, Interface Science and Technology 23(5) (2018) 115-132, https://doi.org/10.1016/B978-0-12-813584-6.00005-3.

Ramírez-Barat, B.; Cano-Díaz, E., ‘Evaluación in situ de recubrimientos protectores para patrimonio cultural metálico mediante espectroscopía de impedancia electroquímica’, Grupo Español de Conservación 8(8) (2015) 6-13, https://doi.org/10.37558/gec.v8i0.278.

Haruyama, S.; Asari, M.; Tsuru, T., ‘Corrosion protection by organic coatings’, in Electrochemical Society Proceedings, eds. M. W. Kendig and H. Leidheiser, ECS, Pennington, 87 (2) (1987) 197-207.

Mendoza Flores, J.; Genescá Llongueras, J.; Durán Romero, R., Espectroscopia de impedancia electroquímica en corrosión. Técnicas electroquímicas para el estudio de la Corrosión, Academic notes, Universidad National Autonoma de México, México City (2002) 53-91.

Fedrizzi, L.; Bergo, A.; Fanicchia, M., ‘Evaluation of accelerated aging procedures of painted galvanized steels by EIS’, Electrochimica Acta 51(8-9) (2006) 1864-1872, https://doi.org/10.1016/j.electacta.2005.02.146.

Hsu, C. H.; Mansfeld, F., ‘Technical note: Concerning the conversion of the constant phase element parameter Y0 into a capacitance’, Corrosion 57(9) (2001) 747-748, https://doi.org/10.5006/1.3280607.

Popov, B. N., ‘Basics of corrosion measurements’, in Corrosion engineering: principles and solved problems, Elsevier, Amsterdam (2015) 181-237.

Orazem, M. E.; Tribollet, B., Electrochemical impedance spectroscopy, John Wiley & Sons, New Jersey (2009).

Zhao X. D., Cheng, Y. F.; Fan, W.; Vladimir, C.; Volha, V.; Alla, T., ‘Inhibitive performance of a rust converter on corrosion of mild steel’, Journal of Materials Engineering and Performance 23(11) (2014) 4102–4108, https://doi.org/10.1007/s11665-014-1199-x.

Al-Mayouf, A. M., ‘Inhibitors for chemical cleaning of iron with tannic acid’, Desalination 121(2) (1999) 173-182, https://doi.org/10.1016/s0011-9164(99)00018-1.

Pantoja-Castro, M. A.; González-Rodríguez, H., ‘Study by infrared spectroscopy and thermogravimetric analysis of tannins and tannic acid’, Revista latinoamericana de química 39(3) (2011) 107-112.

MacDonald, J. R., ‘Impedance spectroscopy’, Annals of Biomedical Engineering 20 (1992) 289-305, https://doi.org/10.1007/BF02368532.

Halliday, D.; Resnick, R.; Krane, K. S., Física Vol. 2, 4th ed., Compañía Editorial Continental, México City (1999) 95-104.

Ángeles San Martin, M. E., Efecto de la temperatura en la evaluación de recubrimientos anticorrosivos, PhD Dissertation, Department of Chemistry, Universidad National Autonoma de México, México City (2006).

Hu, J.; Li, X.; Gao, J.; Zhao, Q., ‘UV aging characterization of epoxy varnish coated steel upon exposure to artificial weathering environment’, Materials and Design 30(5) (2009) 1542-1547, https://doi.org/10.1016/j.matdes.2008.07.051.

García-Ochoa, E.; Jayanthi, N.; Guadalupe Hernandez, J.; López-Montero, M.; Cruz, J.; Pandiyan, T., ‘DFT and electrochemical studies: N,N´,N´´,N´´´-tetrakis(2-methylpyridyl)-1,4,8,11-tetraazacyclotetradecane (TMPC) as an efficient corrosion inhibitor for carbon steel surfaces in an acid medium’, International Journal of Electrochemical Science 8(6) (2013) 8030-8049, https://doi.org/10.1016/S1452-3981(23)12867-7.

Lee, C.; Mansfeld, F., ‘Automatic classification of polymer coating quality using artificial neural networks’, Corrosion Science 41(3) (1999) 439-461, https://doi.org/10.1016/S0010-938X(98)00127-9.

Vesga Lopez, L. F., Estudio de los mecanismos de protección contra la corrosión de recubrimientos orgánicos usando espectroscopía de impedancia electroquímica (EIS), Master Dissertation, Escuela de Física, Universidad Industrial de Santander, Bucaramanga (2004).

Shreepathi, S.; Guin, A. K.; Naik, M. R.; Vattipalli, M. R., ‘Service life prediction of organic coatings: electrochemical impedance spectroscopy vs actual service life’, Journal of Coatings Technology and Research 8 (2010) 191-200, https://doi.org/10.1007/s11998-010-9299-5.

Miszczyk, A.; Darowicki, K., ‘Multispectral impedance quality testing of oil – coating system using principal component analysis’, Progress in Organic Coatings 69(4) (2010) 330-334, https://doi.org/10.1016/j.porgcoat.2010.07.003.

Evolution of the systems surface appearance registered by optical microscopy during the ageing test

Downloads

Published

2024-06-20

How to Cite

Reyes-Trujeque, J., Dzib Pérez, L. R., Pérez-Castellanos, N. A., & Arciniega-Corona, A. (2024). Non-destructive electrochemical evaluation of corrosion protection systems subjected to accelerated ageing tests: a strategy for the conservation of colonial Mexican metal alloys. Conservar Património. https://doi.org/10.14568/cp26340

Issue

Section

In press