Plastic toy soldiers, a lost battle? – an analytical perspective
DOI:
https://doi.org/10.14568/cp2020002Keywords:
Plastic objects, Multi-analytical method, Cellulose acetate, Triphenyl phosphate, Dimethyl phthalateAbstract
The preservation and conservation of museum collections requires a detailed understanding of their constituent materials. The use of a wide variety of instrumental techniques can provide complementary data regarding the composition and structure of these materials. A set of plastic toy soldiers (mid 20th century) from the Oporto Military Museum (Museu Militar do Porto) exibited accelerated deterioration. To better understand this deterioration process, the authors used a multi-analytical approach. The micromorphological features of the objects were characterized with stereoscopic microscopy and VP-SEM-EDS, the polymer and its additives were identified with ATR-FTIR, and 1H and 13C NMR, respectively, and the crystalline degradation products were identified with micro-XRD. The polymer that composes the toys was identified as cellulose acetate, with triphenyl phosphate and dimethyl phthalate additives. A crystalline efflorescence of triphenyl phosphate was identified as a degradation product. This methodology showed to be adequate for a detailed characterization of plastic artefacts in museum environments.
Downloads
References
[1] Brydson, J. Plastics materials, 7th Ed., Elsevier, Butterworth-Heinemann, Oxford (1999) ISBN: 9780750641326.
[2] Wypych, G., Handbook of Plasticizers, 2nd Ed., ChemTec Publishing, Ontario, Canada, (2012) ISBN: 978-1-895198-97-3.
[3] Rychlý, J.; Matisová-Rychlá, L.; Csomorová, K., ‘Degradation of plastics from the ResinKit as a model for the selection of polymers for artworks. Assessment by nonisothermal thermogravimetric analysis and chemiluminometry’, Polymer Degradation and Stability 102(1) (2014) 105-111, https://doi.org/10.1016/j.polymdegradstab.2014.01.033.
[4] Madden, O.; Learner, T., ‘Preserving plastics’, The GCI Newsletter 29 (2014) 4-9.
[5] Keneghan, B., ‘Damage limitation’, Materials World 19 (2010) 24-25.
[6] Pangallo, D.; Chovanová, K.; Šimonovičová, A.; Ferianc, P., ‘Investigation of microbial community isolated from indoor artworks and air environment: identification, biodegradative abilities, and DNA typing’, Canadian Journal of Microbiology 55(3) (2009) 277-287 https://doi.org/10.1139/w08-136.
[7] Rosado, T.; Martins, M.R.; Pires, M.; Mirão, J.; Candeias, A.; Caldeira, A.T., ‘Enzymatic monitorization of mural paintings biodegradation and biodeterioration’, International Journal of Conservation Science, 4 (Spe. Issue) (2013) 603-612.
[8] Montanari, M.; Melloni, V.; Pinzari, F.; Innocenti, G., ‘Fungal biodeterioration of historical library materials stored in Compactus movable shelves’, International Biodeterioration & Biodegradation 75 (2012) 83-88 https://doi.org/10.1016/j.ibiod.2012.03.011.
[9] Manso, M.; Cardeira, A. M.; Silva, M.; Gac, A.; Pessanha, S.; Guerra, M.; Caldeira, A. T.; Candeias, A.; Carvalho, M. L., ‘The mysterious halos in iron gall ink manuscripts: an analytical explanation’ Applied Physics A 118(3) (2015) 1107-1111 https://doi.org/10.1007/s00339-014-8924-z.
[10] Latini, G., ‘Potential hazards of exposure to Di-(2-Ethylhexyl)-Phthalate in babies’, Biology of the Neonate 78(4) (2000) 269–276 https://doi.org/10.1159/000014278.
[11] Hill, S.; Shaw, B.; Wu, H., ‘The clinical effects of plasticizers, antioxidants, and other contaminants in medical polyvinylchloride tubing during respiratory and non-respiratory exposure’ Clinica Chimica Acta 304(1-2) (2001) 1–8 https://doi.org/10.1016/s0009-8981(00)00411-3.
[12] Brockway, R., Safe handling of plastics. Eco Exchange (newsletter of Smithsonian Institution Green Team) 4 (2009) 1-4.
[13] Sonnenschein, C.; Soto A., ‘An updated review of environmental estrogen and androgen mimics and antagonists’, The Journal of Steroid Biochemistry and Molecular Biology 65(1-6) (1998) 143-150 https://doi.org/10.1016/S0960-0760(98)00027-2.
[14] Pourmortazavi, S.; Hosseini, S.; Rahimi, N.; Hajimirsadeghi, S.; Momenian, H., ‘Effect of nitrate content on thermal decomposition of nitrocellulose’, Journal of Hazardous Materials 162(2-3) (2009) 1141-1144 https://doi.org/10.1016/j.jhazmat.2008.05.161.
[15] Rong, L.; Binke, N.; Yuan, W.; Zhengquan, Y.; Rongzu, H., ‘Estimation of the critical temperature of thermal explosion for the highly nitrated nitrocellulose using non-isothermal DSC’, Journal of Thermal Analysis and Calorimetry 58(2) (1999) 369-373 https://doi.org/10.1023/A:1010155221958.
[16] Binke, N.; Rong, L.; Zhengqua, Y.; Yuan, W.; Pu, Y.; Rongzu, H.; Qingsen, Y., ‘Studies on the kinetics of the first order autocatalytic decomposition reaction of highly nitrated nitrocellulose’, Journal of Thermal Analysis and Calorimetry 58(2) (1999) 403-411 https://doi.org/10.1023/A:1010163423775.
[17] Knotková-Cermákova, D.; Vlcková, J., ‘Corrosive effect of plastics, rubber and wood on metals in confined spaces’, British Corrosion Journal 6(1) (1971) 17-22 https://doi.org/10.1179/000705971798324134.
[18] Lattuati-Derieux, A.; Egasse, C.; Thao-Heu, S.; Balcar, N.; Barabant, G.; Lavédrine, B., ‘What do plastics emit? HS-SPME and GC/MS analyses of new standard plastics and plastic objects in museum collections’, Journal of Cultural Heritage 14(3) (2013) 238-247 https://doi.org/10.1016/j.culher.2012.06.005.
[19] Larkin, N.; Blades, N.; Makridou, E., ‘Investigation of volatile organic compounds associated with polyethylene and polypropylene containers used for conservation storage’, The Conservator 24(1) (2000) 41-51 https://doi.org/10.1080/01410096.2000.9995149.
[20] Shashoua, Y., Conservation of plastics: materials science, degradation and preservation, Butterworth-Heinemann, Oxford (2008) https://doi.org/10.4324/9780080878782.
[21] Šuštar, V.; Kolar, J.; Lusa, L.; Learner, T.; Schilling, M.; Rivenc, R.; Khanjian, H.; Koleša, D., ‘Identification of historical polymers using Near-Infrared Spectroscopy’, Polymer Degradation and Stability 107 (2014) 341-347 https://doi.org/10.1016/j.polymdegradstab.2013.12.035.
[22] Schilling, M.; Bouchard, M.; Khanjian, H.; Learner, T.; Phenix, A.; Rivenc, R., ‘Application of Chemical and Thermal Analysis Methods for Studying Cellulose Ester Plastics’, Accounts of Chemical Research 43(6) (2010) 888-896 https://doi.org/10.1021/ar1000132.
[23] Stuart, B., Analytical Techniques in the Sciences: Polymer Analysis, Wiley, Chichester (2007) https://doi.org/10.1002/9780470511343.
[24] Learner, T., ‘The analysis of synthetic paints by pyrolysis gas chromatography, mass spectrometry (PyGCMS)’, Studies in Conservation 46(4) (2001) 225-241 https://doi.org/10.1179/sic.2001.46.4.225.
[25] Pereira, A.; Candeias, A.; Cardoso, A.; Rodrigues, D.; Vandenabeele, P.; Caldeira, A. T., ‘Non-invasive methodology to identify plastic objects in museum environment - a novel approach’, Microchemical Journal 124 (2016) 846-855 https://doi.org/10.1016/j.microc.2015.07.027.
[26] Pereira, A.; Caldeira, A. T.; Maduro, B.; Vandenabeele, P.; Candeias, A., ‘Tortoiseshell or Polymer? Spectroscopic Analysis to Redefine a Purported Tortoiseshell Box with Gold Decorations as a Plastic Box with Brass’, Applied Spectroscopy 70(1) (2016) 68–75 https://doi.org/10.1177/0003702815615344.
[27] Puls, J.; Wilson, S.; Hölter, D., Degradation of cellulose acetate-based materials: a review. Journal of Polymers and the Environment. 19 (2011) 152 -165 https://link.springer.com/article/10.1007/s10924-010-0258-0.
[28] McGath, M., Investigation of Deterioration Mechanisms of Cellulose Acetate Compounded with Triphenyl Phosphate, Ph.D. Thesis, Department of Materials Science and Engineering, The University of Arizona, 2012.
[29] Littlejohn, D.; Pethrick, R.; Quye, A.; Ballany, J., ‘Investigation of the degradation of cellulose acetate museum artefacts’, Polymer Degradation and Stability 98(1) (2013) 416-424 https://doi.org/10.1016/j.polymdegradstab.2012.08.023.
[30] May, E.; Jones, M., Conservation Science: Heritage Materials, 1st Ed., Royal Society of Chemistry, Cambridge (2006) https://doi.org/10.1039/9781847557629.
[31] Silverstein, R.; Webster, F.; Kiemle, D., Spectrometric Identification of Organic Compounds, 8th Ed, John Wiley and Sons, New York (2014) ISBN: 978-0-470-61637-6.
[32] Spectral Database for Organic Compounds, SDBS, https://sdbs.db.aist.go.jp/ (acesso em 2019-12-10).
[33] Tsang, J.;Madden, O., Coughlin, M.; Maiorana, A.; Watson, J.; Little, N.; Speakman, R. Degradation of 'Lumarith' Cellulose Acetate: Examination and Chemical Analysis of a Salesman’s Sample Kit, Studies in Conservation, 54 (2) (2009) 90-105 https://www.tandfonline.com/doi/abs/10.1179/sic.2009.54.2.90.
Downloads
Published
How to Cite
Issue
Section
License
This work is distributed under a Creative Commons Attribution License (CC BY-NC-ND 4.0) which permits use, distribution, and reproduction in any medium following no commercial or derivatives, provided the original author and source are credited.
Copyright remains with the authors.