Aplicação de sensores pH para conservação preventiva nas reservas do Museo Nacional de Ciencias Naturales (Madrid)
DOI:
https://doi.org/10.14568/cp25721Palavras-chave:
Coleções museológicas, Conservação preventiva, Ambiente, Sensores sol-gel, Resposta ótica, Poluição ácidaResumo
A monitorização ambiental é essencial para a preservação adequada dos materiais naturais nos museus, tanto em salas de exposição como em reserva. Os materiais naturais deterioram--se quando ocorrem desvios das condições neutras de pH, decorrentes de poluição, visitantes, intervenções não profissionais, condições inadequadas de armazenamento, catástrofes ou vandalismo. Desta forma, é importante existirem técnicas simples para medir a quantidade de compostos ácidos ou alcalinos na atmosfera de um museu, especialmente nas reservas, onde os objetos são mantidos por longos períodos. No presente estudo, foram sintetizados e aplicados sensores de pH sol-gel para monitorização das reservas do Museo Nacional de Ciencias Naturales de Madrid (Espanha), ao longo de um ano. A maioria dos sistemas de acondicionamento monitorizados mantiveram um pH neutro, no entanto alguns apresentaram-se ligeiramente ácidos. Estas condições ácidas podem favorecer reações de deterioração química nos materiais orgânicos dos animais naturalizados, bem como causar corrosão ácida em minerais e componentes inorgânicos dos objetos.
Downloads
Referências
[1] Antonio Herráez, J. (coord.), Plan Nacional de Conservación Preventiva, Instituto del Patrimonio Cultural de España, Ministerio de Cultura, Madrid (2011), https://ipce.culturaydeporte.gob.es/dam/jcr:2b2035de-685f-467d-bb68-3205a6b1ba70/ (accessed 2022-05-22).
[2] García, I. La conservación preventiva de bienes culturales, Alianza Forma, Madrid (2013).
[3] Thomson, G., The museum environment, 2nd ed., Routledge, New York (1994).
[4] Hatchfield, P. B., Pollutants in the museum environment: practical strategies for problem solving in design, exhibition and storage, Archetype, London (2002).
[5] Barbosa, K.; Ferreira, T.; Moreira, P.; Vieira, E., ‘Monitoring pollutant gases in museum microclimates: a relevant preventive conservation strategy’, Conservar Património 38 (2021) 22-34, https://doi.org/10.14568/cp2020069.
[6] García-Heras, M.; Gil, C.; Carmona, N.; Villegas, M. A., ‘Weathering effects on materials from historical stained glass windows’, Materiales de Construcción 53 (2003) 21-34, https://doi.org/10.3989/mc.2003.v53.i270.271.
[7] Villegas, M. A.; Agua, F.; Conde, J. F.; García-Heras, M., ‘Historical glasses: approaches, degradation and preservation’, Archaeologia Polona 46 (2008) 295-316.
[8] García-Heras, M.; Agua, F.; López, V.; Contreras, J.; Villegas, M. A., ‘Deterioration and conservation strategies of heritage metallic elements of the railway station of Aranjuez’, Revista de Metalurgia Madrid 47 (2011) 48-60, https://doi.org/10.3989/revmetalmadrid.1006.
[9] Carmona, N.; Laiz, L.; González, J. M.; García-Heras, M.; Villegas, M. A.; Sáiz-Jiménez, C., ‘Biodeterioration of historic stained glasses from the Cartuja de Miraflores (Spain)’, International Biodeterioration and Biodegradation 58 (2006) 155-161, https://doi.org/10.1016/j.ibiod.2006.06.014.
[10] Palomar, T.; Agua, F.; García-Heras, M.; Villegas, M. A., ‘Chemical degradation and chromophores of 18th century window glasses’, Glass Technology: European J. of Glass Science and Technology Part A 52(5) (2011) 145-153, https://digital.csic.es/bitstream/10261/123354/1/Chemical%20degradation%20and%20chromophores_2011.pdf (accessed 2022-05-22).
[11] Palomar, T.; Oujja, M.; García-Heras, M.; Villegas, M. A.; Castillejo, M., ‘Laser induced breakdown spectroscopy for analysis and characterization of degradation pathologies of Roman glasses’, Spectrochimica Acta Part B: Atomic Spectroscopy 87 (2013) 114-120, https://doi.org/10.1016/j.sab.2013.05.004.
[12] Gibson, L. T.; Watt, C. M., ‘Acetic and formic acids emitted from wood samples and their effect on selected materials in museum environments’, Corrosion Science 52(1) (2010) 172-178, https://doi.org/10.1016/j.corsci.2009.08.054.
[13] Carmona, N.; Villegas, M. A.; Fernández, J. M., ‘Optical sensors for evaluating environmental acidity in the preventive conservation of historical objects’, Sensors and Actuators A: Physical 116(3) (2004) 398-404, https://doi.org/10.1016/j.sna.2004.05.009.
[14] García-Heras, M.; Gil, C.; Carmona, N.; Faber, J.; Kromka, K.; Villegas, M. A., ‘Optical behaviour of pH detectors based on sol-gel technology’, Analytica Chimica Acta 540(1) (2005) 147-152, https://doi.org/10.1016/j.aca.2004.09.031.
[15] García-Heras, M.; Kromka, K.; Faber, J.; Karaszkiewicz, P.; Villegas, M. A., ‘Evaluation of air acidity through optical sensors’, Environmental Science and Technology 39(10) (2005) 3743-3747, https://doi.org/10.1021/es049558n.
[16] Peña-Poza, J.; García-Heras, M.; Palomar, T.; Laudy, A.; Modzelewska, E.; Villegas, M. A., ‘Environmental evaluation with chemical sensors in the Palace Museum of Wilanów’, Bull. Polish Academy of Sciences: Technical Sciences 59(3) (2011) 247-252, https://doi.org/10.2478/v10175-011-0030-1.
[17] Hackney, S., ‘Colour measurement of acid-detector strips for the quantification of volatile organic acids in storage conditions’, Studies in Conservation 61 (2016) 55-69, https://doi.org/10.1080/00393630.2016.1140935.
[18] Yang, L.; Stulen, I.; De Kok, L. J.; Zheng, Y., ‘SO2, NOX and acid deposition problems in China - Impact on agriculture’, Phyton (Austria), Special issue: Global change 42(3) (2002) 255-264, https://www.zobodat.at/pdf/PHY_42_3_0255-0264.pdf (accessed 2022-05-25).
[19] Baergen, A. M.; Donaldson, D. J., ‘Photochemical renoxification of nitric acid on real urban grime”, Environmental Science and Technology 47(2) (2013) 815-820, https://doi.org/10.1021/es3037862.
[20] Grzywacz, M., Monitoring for gaseous pollutants in museum environments. Tools for conservation, Getty Conservation Institute, Los Angeles (2006) 86-90, https://www.getty.edu/publications/resources/virtuallibrary/0892368519.pdf (accessed 2022-05-25).
[21] Villegas, M. A.; Peña-Poza, J.; García-Heras, M., ‘Sol-Gel environmental sensors for preventive conservation of Cultural Heritage’, in Handbook of Sol-Gel Science and Technology, ed. Klein, L., Aparicio, M., Jitianu, A.; 2nd ed., Springer Cham (2016) 1-32, https://doi.org/10.1007/978-3-319-32101-1_139.
[22] Villegas, M. A.; Pascual, L., ‘Sol-Gel silica coatings doped with a pH sensitive chromophore’, Thin Solid Films 351(1-2) (1999) 103-108, https://doi.org/10.1016/S0040-6090(98)01786-6.
[23] Villegas, M. A.; Pascual, L.; Paje, S. E.; García, M. A.; Llopis, J., ‘Eriochrome cyanine doped sol-gel coatings. Optical behavior against pH’, J. European Ceramic Society 20(10) (2000) 1621-1628, https://doi.org/10.1016/S0955-2219(99)00281-2.
[24] Villegas, M. A.; García, M. A.; Paje, S. E.; Llopis, J., ‘Incorporation and optical behaviour of 4-dimethylaminazobenzene in sol-gel silica thin coatings’, J. European Ceramic Society 22(9-10) (2002) 1475-1482, https://doi.org/10.1016/S0955-2219(01)00477-0.
[25] García, M. A.; Paje, S. E.; Villegas, M. A.; Llopis, J., ‘Preparation and characterization of calcein-doped thin coatings’, Applied Physics A 74 (2002) 83-88, https://doi.org/10.1007/s003390100852.
[26] Montero, E. F.; García, M. A.; Villegas, M. A.; Llopis, J., ‘Study of optical properties of fluorescein-doped sol-gel coatings as a function of concentration and pH’, Bol. Sociedad Española Cerámica y Vidrio 43(1) (2004) 8-11, https://doi.org/10.3989/cyv.2004.v43.i1.604.
[27] Peña Poza, J., Optimización, comportamiento y preindustrialización de sensores ambientales basados en la tecnología Sol-gel, PhD dissertation, Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, Madrid (2014), http://hdl.handle.net/10486/664117.
[28] Peña-Poza, J.; Conde, J. F.; Palomar, T.; Agua, F.; García-Heras, M.; Villegas, M. A., ‘Environmental evaluation of the holdings at the CCHS-CSIC Tomás Navarro Tomás Library”, Revista Española de Documentación Científica 34(1) (2011) 65-78, https://doi.org/10.3989/redc.2011.1.774.
[29] Peña-Poza, J.; Conde, J. F.; Agua, F.; García-Heras, M.; Villegas, M. A., ‘Application of sol-gel based sensors to environmental monitoring of Mauméjean stained glass windows housed in two different buildings at downtown Madrid’, Bol. Sociedad Española Cerámica y Vidrio 52(6) (2013) 268-276, https://doi.org/10.3989/cyv.332013.
[30] Peña-Poza, J.; Gálvez Farfán, J. M.; González Rodrigo, M.; García Ramírez, S.; Villegas Broncano, M. A.; García Heras, M., ‘Propuesta de protocolo de valoración de la acidez ambiental en salas y vitrinas de la exposición temporal “El último viaje de la fragata Mercedes. La razón frente al expolio” (Museo Naval, Madrid)’, GE-Conservación 8 (2015) 14-26, https://doi.org/10.37558/gec.v8i0.279.
[31] García-Heras, M.; Villegas, M. A., Innovación y gestión de la conservación preventiva en museos: un ejemplo con colecciones de vidrio y materiales cerámicos’, PH investigación 5 (2015) 103-117, https://www.iaph.es/revistaph/index.php/revistaph/article/view/4060 (accessed 2022-05-22).
[32] Villegas Broncano, M. A.; García Heras, M.; Peña Poza, J.; de Arcas Castro, G.; Barrera López de Turiso, E.; López Navarro, J. M.; Llorente Alonso, A.,Sistema para la determinación de acidez ambiental y método que hace uso del mismo, Spanish patent No.2373138 (request No.201031071), Oficina Española de Patentes y Marcas (2010), https://digital.csic.es/bitstream/10261/54253/1/ES2373138A1%28cchs%29n.pdf (accessed 2022-05-22).
[33] Llorente-Alonso, A.; Peña-Poza, J.; de Arcas, G.; García-Heras, M.; López, J. M.; Villegas, M. A., ‘Interface electronic system for measuring air acidity with optical sensors’, Sensors and Actuators A:Physics 194 (2013) 67-74, https://doi.org/10.1016/j.sna.2013.01.058.
[34] Doadrio, I.; Araujo; R.; Sanchez-Álmazán, J., Las Colecciones del Museo Nacional de Ciencias Naturales. Investigación y Patrimonio, Consejo Superior de Investigaciones Científicas, Madrid (2019).
[35] Teixeira, C.; Waterhouse, D. M.; Moura, L.; Andrade, P., ‘Displaying a taxidermy rhinoceros in a museum: the Lisbon conservation approach’, Conservar Património 33 (2020) 10-23, https://doi.org/10.14568/cp2018043.
[36] Cruz, A. J.; Pires, J.; Carvalho, A. P.; Carvalho, M. B., ‘Comparison of adsorbent materials for acetic acid removal in showcases’, Journal of Cultural Heritage 9 (3) (2008) 244-252, https://doi.org/10.1016/j.culher.2008.03.001.
[37] Schieweck, A., ‘Adsorbent media for the sustainable removal of organic air pollutants from museum display cases’, Heritage Science 8(12) (2020) 1-18, https://doi.org/10.1186/s40494-020-0357-8.
[38] Ramalho, O.; Dupont, A. L.; Egasse, C.; Lattuati-Derieux, A., ‘Emission rates of volatile organic compounds from paper’, e-PreservationScience 6 (2009) 53-59, https://www.academia.edu/14075865/Emission_rates_of_volatile_organic_compounds_from_paper.
[39] Pérez-Azcárate, M.; Caballero-López, B.; Uribe, F.; Ibáñez, N.; Masó, G.; García-Franquesa, E.; Carrillo-Ortiz, J.; Agua, F.; García-Heras, M.; Villegas, M. A., ‘Assessing environmental acidity in storerooms of natural history collections’, Curator 64(1) (2021) 155-182, http://dx.doi.org/10.1111/cura.12405.
[40] Hicks B. B., Conservation of historic buildings and monuments. Wet and dry surface deposition of air pollutants and their modeling, National Academy Press, Washington DC, USA (1982) 183–196.
[41] Pereira, L. D.; Gaspar, A. R.; Costa, J. J.; Pereira, G., ‘The importance of long-term hygrothermal assessment of museum spaces: method and application in a permanent exhibition in a historical building’, Conservar Património 30 (2019) 91-105, https://doi.org/10.14568/cp2018005.

Downloads
Publicado
Como Citar
Edição
Secção
Licença
O presente trabalho é distribuído nos termos da Licença Creative Commons (CC BY-NC 4.0) que permite a utilização, partilha e reprodução para fins não comerciais e sem modificações, desde que o autor e fonte original sejam citados.
O Copyright permanece com os autores.