The historical mortars of the castle of Cifuentes (Guadalajara, Spain)

Authors

DOI:

https://doi.org/10.14568/cp2020061

Keywords:

Historic mortars, Gypsum mortars, Hydraulic mortars, Fortifications

Abstract

This communication analyzes the results of the mineralogical and petrographic characterization of the rendering and masonry mortars from Cifuentes Castle. The castle has five towers, a 400 m2 courtyard and an Islamic influence main door. During the centuries several modifications have been done, reaching nowadays a state of almost abandonment. As part of a broader study of the materials and conservation state of the castle, this study allows us to differentiate several types of mortars that correlate with different construction periods of the monument: the core of the masonry of the courtyard wall made with gypsum mortar, and possibly with an Islamic origin; the main construction period of the castle, that used lime mortars with clay impurities and ceramic fragments; a reparations period with lime mortars that get thicker the core masonry of the courtyard; and a final rendering with lime and gypsum mortar finished with a layer of gray gypsum mortar.

Downloads

Download data is not yet available.

References

[1] Moropoulou, A.; Bakolas, A.; Moundoulas, P.; Aggelakopoulou, E., ‘Reverse engineering: a proper methodology for compatible restoration mortars’, in Proceedings of International RILEM Workshop on Repair Mortars for Historic Masonry, Delft (2005) 278-291, https://www.rilem.net/images/publis/pro067-025.pdf (acceso en 2021-12-08).

[2] Apostolopoulou, M.; Aggelakopoulou, E.; Bakolas, A.; Moropoulou, A., ‘Compatible mortars for the sustainable conservation of stone in masonries’, in Advanced Materials for the Conservation of Stone , eds. M. Hosseini & I. Karapanagiotis, Springer, Cham (2018) 97-123, https://doi.org/10.1007/978-3-319-72260-3_5.

[3] Kumar, D. N.; Pancharathi, R. K., ‘Material Characterization of Ancient Mortar and Renovation of Heritage Structures for Sustainability—A State-of-the-Art Review’, in Advances in Sustainable Construction Materials 68 (2020) 43-58, https://doi.org/10.1007/978-981-15-3361-7_4.

[4] Schueremans, L.; Cizer, Ö.; Janssens, E.; Serré, G.; Van Balen, K. , ‘Characterization of repair mortars for the assessment of their compatibility in restoration projects. Research and practice’, Construction and building materials 25(12) (2011) 4338-4350, https://doi.org/10.1016/j.conbuildmat.2011.01.008.

[5] Papayianni, I., ‘The longevity of old mortars’, Applied Physics A 83 (2006) 685-688, https://doi.org/10.1007/s00339-006-3523-2.

[6] Hughes, D.C.; Weber, J.; Kozlowski, R., ‘Roman Cement for the Production of Conservation Mortars’, in 2nd Conference on Historic Mortars - HMC 2010 and RILEM TC 203-RHM final workshop, RILEM Publications SARL, Praga (2010) 1043-1050.

[7] Veiga, R.; Aguiar, J.; Santos Silva, A.; Carvallo, F., ‘Methodologies for characterization and repair of mortars of ancient buildings’, in Proceedings of the 3rd International Seminar Historical Constructions, Universidade do Minho, Guimarães, (2001) 353-362.

[8] Hees, R.; Binda, L; Papayianni, I; Toumbakari, E., ‘Characterisation and damage analysis of old mortars’, Materials and Structures 37 (2004) 644-648, https://doi.org/10.1007/BF02483293.

[9] Van Balen,K.; Papayianni, I.; Van Hees, R.; Binda, L.; Waldum A., ‘Introduction to requeriments for and functions and properties of repair mortars’, Materials and Structures 38 (2005) 781-785, https://doi.org/10.1007/BF02479291.

[10] Veiga, R.; Velosa, A.; Magalhes, A., ‘Experimental applications of mortars with pozzolanic additions: Characterization and performance evaluation’, Construction and Building Materials 23(1) (2009) 318-327, https://doi.org/10.1016/j.conbuildmat.2007.12.003.

[11] Baronio, G.; Binda, L, ‘Study of the pozzolanicity of some bricks and clays’, Construction and Building Materials 11(1) (1997) 41-46, https://doi.org/10.1016/S0950-0618(96)00032-3.

[12] Bustamante, R.; González, F.; Lasheras, F.; Sanz-Arauz, D., ‘Revestimiento de los patios madrileños, soluciones y alternativas’, in Actas de las Jornadas de Investigación en Construcción, Madrid (2005) 191-198.

[13] Livingston, R.; Wolde-Tinsae, A.; Chaturbahai, A., ‘The use of gypsum mortar in historic buildings’, Structural repair and maintenance of historical buildings II 1 (1991) 157-165.

[14] Luxan, M. P.; Dorrego, F.; Laborde, A., ‘Ancient gypsum mortars from St. Engracia (Zaragoza, Spain): Characterization. Identification of additives and treatments’ Cement and Concrete Research 25(8) (1995) 1755-1765, https://doi.org/10.1016/0008-8846(95)00171-9.

[15] Raymond, M., ‘El enlucido exterior de yeso en las rehabilitaciones de las fachadas de París’, Informes de la construcción 38(382) (1986) 35-39, https://doi.org/10.3989/ic.1986.v38.i382.1740.

[16] Association ouvrière des Compagnons du Devoir, La plâtrerie, le staff et le stuc, Librairie du Compagnonnage, Paris (1994).

[17] Genestar, C.; Pons, C., ‘Ancient covering plaster mortars from several convents and Islamic and Gothic palaces in Palma de Mallorca (Spain). Analytical characterization’, Journal of Cultural Heritage 4(4) (2003) 291-298, https://doi.org/10.1016/j.culher.2003.02.001.

[18] Lucas, G., ‘High-temperatures gypsum plaster on historic exteriors. A plea for gypsum’, ZKG International 56(8-9) (2003) 54-65.

[19] Lucas, G., ‘The special features of high-temperatures gypsum mortar as a building material’, ZKG International 56(8-9) (2003) 78-85.

[20] Middendorf, B., ‘Physico-mechanical and microstructural characteristics of historic and restoration mortars based on gypsum: current knowledge and perspective’, Geological Society London, Special Publications 205 (2002) 165-176, https://doi.org/10.1144/GSL.SP.2002.205.01.13.

[21] Zier, H.; Auras, M., Gipsmörtel im historischen Mauerwerk und an Fassaden, Wissenschaftlich-Technische alplege, München (2008).

[22] Arens, P., Untersuchung und Entwicklung von Gipsmörteln für den Außenbereich unter besonderer Berücksichtigung der Wasserresistenz, Disertaçión doctoral, Universität Siegen. (2002), https://dspace.ub.uni-siegen.de/handle/ubsi/141 (acceso en 2021-12-08).

[23] Karoglou, M.; Bakolas, N.; Kouloumbi, A.; Moropoulou, A., ‘Reverse engineering methodology for studying historic buildings coatings: The case study of the Hellenic Parliament neoclassical building’, Progress in Organic Coatings 72(1-2) (2011) 202-209, https://doi.org/10.1016/j.porgcoat.2011.01.008.

[24] Ponce-Antón, G.; Cruz Zuluaga, M.; Angel Ortega, L.; Agirre Mauleon, J., ‘Petrographic and Chemical–Mineralogical Characterization of Mortars from the Cistern at Amaiur Castle (Navarre, Spain)’, Minerals 10(4) (2020) 311-327, https://doi.org/10.3390/min10040311.

[25] Parra, S. J. D.; Sanz-Arauz, D. S., ‘El Castillo de Overa. Simbiosis de cal y yeso’, in Décimo Congreso Nacional y Segundo Congreso Internacional Hispanoamericano de Historia de la Construcción,), Instituto Juan de Herrera, Madrid (2017) 427-436.

[26] Villanueva, L.; Sanz-Arauz, D.; Mora, S., ‘La construcción medieval y renacentista en las puertas del conjunto amurallado de Moya (Cuenca)’, in Actas del Cuarto Congreso Nacional de Historia de la Construcción, Instituto Juan de Herrera, Madrid (2005) 1115-1121.

[27] Lindqvist, J.; Sandström, M., ‘Quantitative analysis of historical mortars using optical microscopy’, Materials and Structures 33 (2000) 612-617, https://doi.org/10.1007/BF02480600.

[28] Middendorf, B.; Schade, T.; Kraus, K., ‘Quantitative Analysis of Historic Mortars by Digital Image Analysis of Thin Sections’, Restoration of Buildings and Monuments 23(2) (2017) 83-92, https://doi.org/10.1515/rbm-2016-0011.

[29] Maruri, A, Castillo de Cifuentes. Análisis y estado de conservación, Trabajo fin de grado en Arquitectura, Departamento Construcción y Tecnología Arquitectónica, Universidad Politécnica de Madrid (2019), https://oa.upm.es/55884/ (acceso en 2021-12-08).

[30] Chung, F., ‘Quantitative interpretation of X-ray diffraction patterns of mixtures. I. Matrix-flushing method for quantitative multicomponent analysis’, Journal of Applied Crystallography 7 (1974) 519–525, https://doi.org/10.1107/S0021889874010375.

[31] Chung, F., ‘Quantitative interpretation of X-ray diffraction patterns of mixtures. II. Adiabatic principle of X-ray diffraction analysis of mixtures’, Journal of Applied Crystallography 7 (1974) 526–531, https://doi.org/10.1107/S0021889874010387.

[32] Mertens, G.; Elsen, J., ‘Use of computer assisted image analysis for the determination of the grain-size distribution of sands used in mortars’, Cement and Concrete Research 36(8) (2006) 1453-1459.

[33] Middendorf, B.; Schade, T.; Kraus, K., ‘Quantitative analysis of historic mortars by digital image analysis of thin sections’, Restoration of Buildings and Monuments 23(2) (2017) 83-92, https://doi.org/10.1515/rbm-2016-0011.

[34] Gonzalez Cortina, M.; Villanueva Domínguez, L., ‘Aired-time and chamotte hydraulic mortars’, Materiales de Construcción 52(266) (2002) 65-76, https://doi.org/10.3989/mc.2002.v52.i266.335.

[35] Leslie, A. B.; Hughes, J. J., ‘Binder microstructure in lime mortars: implications for the interpretation of analysis results’, Quarterly Journal of Engineering Geology and Hydrogeology 35(3) (2002) 257-263, http://dx.doi.org/10.1144/1470-923601-27.

Published

2022-01-20

How to Cite

Mayo Corrochano, C., & Sanz Arauz, D. (2022). The historical mortars of the castle of Cifuentes (Guadalajara, Spain). Conservar Património. https://doi.org/10.14568/cp2020061

Issue

Section

In press