Application of pH sensors for preventive preservation in storerooms at the Museo Nacional de Ciencias Naturales (Madrid)
DOI:
https://doi.org/10.14568/cp25721Keywords:
Museum collections, Preventive conservation, Environment, Sol-gel sensors, Optical response, Acid pollutionAbstract
Environmental monitoring is essential for the proper preservation of natural materials in museums, both in exhibition halls and storerooms. Deterioration and degradation of natural materials occur when deviations from neutral pH conditions take place as a consequence of pollution, visitors, non-professional interventions, unsuitable storage conditions, catastrophes, or vandalism. Simple techniques to measure the extent of acidic or alkaline gasses in the museum atmosphere are therefore important, especially in storerooms where objects are placed for long periods. Sol-gel pH sensors have been synthesized and applied for monitoring storerooms of the Museo Nacional de Ciencias Naturales of Madrid (Spain). pH monitoring was carried out for one year under different meteorological seasons. Most of the storage systems monitored maintained a neutral pH, while some of them were slightly acidic. These acidic conditions could favour chemical deterioration on organic structures of naturalized animals, and cause acidic corrosion in minerals and inorganic parts of the objects.
Downloads
References
[1] Antonio Herráez, J. (coord.), Plan Nacional de Conservación Preventiva, Instituto del Patrimonio Cultural de España, Ministerio de Cultura, Madrid (2011), https://ipce.culturaydeporte.gob.es/dam/jcr:2b2035de-685f-467d-bb68-3205a6b1ba70/ (accessed 2022-05-22).
[2] García, I. La conservación preventiva de bienes culturales, Alianza Forma, Madrid (2013).
[3] Thomson, G., The museum environment, 2nd ed., Routledge, New York (1994).
[4] Hatchfield, P. B., Pollutants in the museum environment: practical strategies for problem solving in design, exhibition and storage, Archetype, London (2002).
[5] Barbosa, K.; Ferreira, T.; Moreira, P.; Vieira, E., ‘Monitoring pollutant gases in museum microclimates: a relevant preventive conservation strategy’, Conservar Património 38 (2021) 22-34, https://doi.org/10.14568/cp2020069.
[6] García-Heras, M.; Gil, C.; Carmona, N.; Villegas, M. A., ‘Weathering effects on materials from historical stained glass windows’, Materiales de Construcción 53 (2003) 21-34, https://doi.org/10.3989/mc.2003.v53.i270.271.
[7] Villegas, M. A.; Agua, F.; Conde, J. F.; García-Heras, M., ‘Historical glasses: approaches, degradation and preservation’, Archaeologia Polona 46 (2008) 295-316.
[8] García-Heras, M.; Agua, F.; López, V.; Contreras, J.; Villegas, M. A., ‘Deterioration and conservation strategies of heritage metallic elements of the railway station of Aranjuez’, Revista de Metalurgia Madrid 47 (2011) 48-60, https://doi.org/10.3989/revmetalmadrid.1006.
[9] Carmona, N.; Laiz, L.; González, J. M.; García-Heras, M.; Villegas, M. A.; Sáiz-Jiménez, C., ‘Biodeterioration of historic stained glasses from the Cartuja de Miraflores (Spain)’, International Biodeterioration and Biodegradation 58 (2006) 155-161, https://doi.org/10.1016/j.ibiod.2006.06.014.
[10] Palomar, T.; Agua, F.; García-Heras, M.; Villegas, M. A., ‘Chemical degradation and chromophores of 18th century window glasses’, Glass Technology: European J. of Glass Science and Technology Part A 52(5) (2011) 145-153, https://digital.csic.es/bitstream/10261/123354/1/Chemical%20degradation%20and%20chromophores_2011.pdf (accessed 2022-05-22).
[11] Palomar, T.; Oujja, M.; García-Heras, M.; Villegas, M. A.; Castillejo, M., ‘Laser induced breakdown spectroscopy for analysis and characterization of degradation pathologies of Roman glasses’, Spectrochimica Acta Part B: Atomic Spectroscopy 87 (2013) 114-120, https://doi.org/10.1016/j.sab.2013.05.004.
[12] Gibson, L. T.; Watt, C. M., ‘Acetic and formic acids emitted from wood samples and their effect on selected materials in museum environments’, Corrosion Science 52(1) (2010) 172-178, https://doi.org/10.1016/j.corsci.2009.08.054.
[13] Carmona, N.; Villegas, M. A.; Fernández, J. M., ‘Optical sensors for evaluating environmental acidity in the preventive conservation of historical objects’, Sensors and Actuators A: Physical 116(3) (2004) 398-404, https://doi.org/10.1016/j.sna.2004.05.009.
[14] García-Heras, M.; Gil, C.; Carmona, N.; Faber, J.; Kromka, K.; Villegas, M. A., ‘Optical behaviour of pH detectors based on sol-gel technology’, Analytica Chimica Acta 540(1) (2005) 147-152, https://doi.org/10.1016/j.aca.2004.09.031.
[15] García-Heras, M.; Kromka, K.; Faber, J.; Karaszkiewicz, P.; Villegas, M. A., ‘Evaluation of air acidity through optical sensors’, Environmental Science and Technology 39(10) (2005) 3743-3747, https://doi.org/10.1021/es049558n.
[16] Peña-Poza, J.; García-Heras, M.; Palomar, T.; Laudy, A.; Modzelewska, E.; Villegas, M. A., ‘Environmental evaluation with chemical sensors in the Palace Museum of Wilanów’, Bull. Polish Academy of Sciences: Technical Sciences 59(3) (2011) 247-252, https://doi.org/10.2478/v10175-011-0030-1.
[17] Hackney, S., ‘Colour measurement of acid-detector strips for the quantification of volatile organic acids in storage conditions’, Studies in Conservation 61 (2016) 55-69, https://doi.org/10.1080/00393630.2016.1140935.
[18] Yang, L.; Stulen, I.; De Kok, L. J.; Zheng, Y., ‘SO2, NOX and acid deposition problems in China - Impact on agriculture’, Phyton (Austria), Special issue: Global change 42(3) (2002) 255-264, https://www.zobodat.at/pdf/PHY_42_3_0255-0264.pdf (accessed 2022-05-25).
[19] Baergen, A. M.; Donaldson, D. J., ‘Photochemical renoxification of nitric acid on real urban grime”, Environmental Science and Technology 47(2) (2013) 815-820, https://doi.org/10.1021/es3037862.
[20] Grzywacz, M., Monitoring for gaseous pollutants in museum environments. Tools for conservation, Getty Conservation Institute, Los Angeles (2006) 86-90, https://www.getty.edu/publications/resources/virtuallibrary/0892368519.pdf (accessed 2022-05-25).
[21] Villegas, M. A.; Peña-Poza, J.; García-Heras, M., ‘Sol-Gel environmental sensors for preventive conservation of Cultural Heritage’, in Handbook of Sol-Gel Science and Technology, ed. Klein, L., Aparicio, M., Jitianu, A.; 2nd ed., Springer Cham (2016) 1-32, https://doi.org/10.1007/978-3-319-32101-1_139.
[22] Villegas, M. A.; Pascual, L., ‘Sol-Gel silica coatings doped with a pH sensitive chromophore’, Thin Solid Films 351(1-2) (1999) 103-108, https://doi.org/10.1016/S0040-6090(98)01786-6.
[23] Villegas, M. A.; Pascual, L.; Paje, S. E.; García, M. A.; Llopis, J., ‘Eriochrome cyanine doped sol-gel coatings. Optical behavior against pH’, J. European Ceramic Society 20(10) (2000) 1621-1628, https://doi.org/10.1016/S0955-2219(99)00281-2.
[24] Villegas, M. A.; García, M. A.; Paje, S. E.; Llopis, J., ‘Incorporation and optical behaviour of 4-dimethylaminazobenzene in sol-gel silica thin coatings’, J. European Ceramic Society 22(9-10) (2002) 1475-1482, https://doi.org/10.1016/S0955-2219(01)00477-0.
[25] García, M. A.; Paje, S. E.; Villegas, M. A.; Llopis, J., ‘Preparation and characterization of calcein-doped thin coatings’, Applied Physics A 74 (2002) 83-88, https://doi.org/10.1007/s003390100852.
[26] Montero, E. F.; García, M. A.; Villegas, M. A.; Llopis, J., ‘Study of optical properties of fluorescein-doped sol-gel coatings as a function of concentration and pH’, Bol. Sociedad Española Cerámica y Vidrio 43(1) (2004) 8-11, https://doi.org/10.3989/cyv.2004.v43.i1.604.
[27] Peña Poza, J., Optimización, comportamiento y preindustrialización de sensores ambientales basados en la tecnología Sol-gel, PhD dissertation, Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, Madrid (2014), http://hdl.handle.net/10486/664117.
[28] Peña-Poza, J.; Conde, J. F.; Palomar, T.; Agua, F.; García-Heras, M.; Villegas, M. A., ‘Environmental evaluation of the holdings at the CCHS-CSIC Tomás Navarro Tomás Library”, Revista Española de Documentación Científica 34(1) (2011) 65-78, https://doi.org/10.3989/redc.2011.1.774.
[29] Peña-Poza, J.; Conde, J. F.; Agua, F.; García-Heras, M.; Villegas, M. A., ‘Application of sol-gel based sensors to environmental monitoring of Mauméjean stained glass windows housed in two different buildings at downtown Madrid’, Bol. Sociedad Española Cerámica y Vidrio 52(6) (2013) 268-276, https://doi.org/10.3989/cyv.332013.
[30] Peña-Poza, J.; Gálvez Farfán, J. M.; González Rodrigo, M.; García Ramírez, S.; Villegas Broncano, M. A.; García Heras, M., ‘Propuesta de protocolo de valoración de la acidez ambiental en salas y vitrinas de la exposición temporal “El último viaje de la fragata Mercedes. La razón frente al expolio” (Museo Naval, Madrid)’, GE-Conservación 8 (2015) 14-26, https://doi.org/10.37558/gec.v8i0.279.
[31] García-Heras, M.; Villegas, M. A., Innovación y gestión de la conservación preventiva en museos: un ejemplo con colecciones de vidrio y materiales cerámicos’, PH investigación 5 (2015) 103-117, https://www.iaph.es/revistaph/index.php/revistaph/article/view/4060 (accessed 2022-05-22).
[32] Villegas Broncano, M. A.; García Heras, M.; Peña Poza, J.; de Arcas Castro, G.; Barrera López de Turiso, E.; López Navarro, J. M.; Llorente Alonso, A.,Sistema para la determinación de acidez ambiental y método que hace uso del mismo, Spanish patent No.2373138 (request No.201031071), Oficina Española de Patentes y Marcas (2010), https://digital.csic.es/bitstream/10261/54253/1/ES2373138A1%28cchs%29n.pdf (accessed 2022-05-22).
[33] Llorente-Alonso, A.; Peña-Poza, J.; de Arcas, G.; García-Heras, M.; López, J. M.; Villegas, M. A., ‘Interface electronic system for measuring air acidity with optical sensors’, Sensors and Actuators A:Physics 194 (2013) 67-74, https://doi.org/10.1016/j.sna.2013.01.058.
[34] Doadrio, I.; Araujo; R.; Sanchez-Álmazán, J., Las Colecciones del Museo Nacional de Ciencias Naturales. Investigación y Patrimonio, Consejo Superior de Investigaciones Científicas, Madrid (2019).
[35] Teixeira, C.; Waterhouse, D. M.; Moura, L.; Andrade, P., ‘Displaying a taxidermy rhinoceros in a museum: the Lisbon conservation approach’, Conservar Património 33 (2020) 10-23, https://doi.org/10.14568/cp2018043.
[36] Cruz, A. J.; Pires, J.; Carvalho, A. P.; Carvalho, M. B., ‘Comparison of adsorbent materials for acetic acid removal in showcases’, Journal of Cultural Heritage 9 (3) (2008) 244-252, https://doi.org/10.1016/j.culher.2008.03.001.
[37] Schieweck, A., ‘Adsorbent media for the sustainable removal of organic air pollutants from museum display cases’, Heritage Science 8(12) (2020) 1-18, https://doi.org/10.1186/s40494-020-0357-8.
[38] Ramalho, O.; Dupont, A. L.; Egasse, C.; Lattuati-Derieux, A., ‘Emission rates of volatile organic compounds from paper’, e-PreservationScience 6 (2009) 53-59, https://www.academia.edu/14075865/Emission_rates_of_volatile_organic_compounds_from_paper.
[39] Pérez-Azcárate, M.; Caballero-López, B.; Uribe, F.; Ibáñez, N.; Masó, G.; García-Franquesa, E.; Carrillo-Ortiz, J.; Agua, F.; García-Heras, M.; Villegas, M. A., ‘Assessing environmental acidity in storerooms of natural history collections’, Curator 64(1) (2021) 155-182, http://dx.doi.org/10.1111/cura.12405.
[40] Hicks B. B., Conservation of historic buildings and monuments. Wet and dry surface deposition of air pollutants and their modeling, National Academy Press, Washington DC, USA (1982) 183–196.
[41] Pereira, L. D.; Gaspar, A. R.; Costa, J. J.; Pereira, G., ‘The importance of long-term hygrothermal assessment of museum spaces: method and application in a permanent exhibition in a historical building’, Conservar Património 30 (2019) 91-105, https://doi.org/10.14568/cp2018005.
Downloads
Published
How to Cite
Issue
Section
License
This work is distributed under a Creative Commons Attribution License (CC BY-NC-ND 4.0) which permits use, distribution, and reproduction in any medium following no commercial or derivatives, provided the original author and source are credited.
Copyright remains with the authors.