The ground-penetrating radar (GPR) method in the characterization of the Monastery of Batalha

Authors

DOI:

https://doi.org/10.14568/cp2018050

Keywords:

Monastery, Batalha, Georadar, Characterization, Walls, Foundations, Infrastructure

Abstract

The characterization of the Monastery of Batalha included the use of the geophysical method of ground-penetrating radar (GPR), a non-destructive and indirect method that provides highresolution 2D/3D images of the structures to investigate. Owing to the nature and aims of the survey, appropriate measurement grids, acquisition parameters and adapted data processing techniques were used. The GPR survey provided important information about the Monastery foundations, construction and conservation. GPR high-resolution images allowed to locate recent and ancient infrastructures, columns foundations and structures of historical-archaeological interest. The characterization of the Monastery walls was also carried out using GPR on the surface of walls of the Cloister of D. João I and of the Church. These results contribute for the proposal of an inner structure model of the walls. GPR proved to be an efficient and expeditious method that allowed obtaining information to be used in the preservation, recovery and rehabilitation of the Monument.

 

Received: 2018-11-9
Revised: 2019-1-8
Accepted: 2019-1-29
Online: 2019-3-18
Publication: 2019-11-6

Downloads

Download data is not yet available.

References

[1] Corbusier, Le; Eardley, A., The Athens Charter. Grossman Publishers, New York (1973).

[2] ICOMOS Australia, The Burra Charter: The Australia ICOMOS Charter for Places of Cultural Significance, Australia ICOMOS, Burwood (1999).

[3] ‘Cracow Charter 2000’, in International Conference on Conservation Krakow 2000, Krakow (2000) 191-193.

[4] ‘Carta de Lisboa sobre reabilitação urbana integrada 1995’, https://www.culturanorte.pt/fotos/editor2/1995__carta_de_lisboa_sobre_a_reabilitacao_urbana_integrada-1%C2%BA_encontro_luso-brasileiro_de_reabilitacao_urbana.pdf (acesso em 2019-1-8).

[5] Feilden, B., Conservation of Historic Buildings, 3rd ed., Architectural Press, Oxford (2003).

[6] Aguiar, J., ‘Património cultural e os paradigmas da conservação e da reabilitação: ontem!’, documento, Ordem dos Arquitetos, Lisboa (2008).

[7] Barraca, N.; Almeida, N.; Varum, H.; Almeida, F.; Matias, M., ‘A case study of the use of GPR for rehabilitation of a classified Art Deco building: The InovaDomus house’, Journal of Applied Geophysics 127 (2016) 1-13, https://doi.org/10.1016/j.jappgeo.2016.02.002.

[8] Nazarian, S.; Xiong, Y.; Rosenblad, B. (eds.), Innovative Applications of Geophysics in Civil Engineering’, American Society of Civil Engineers, Denver (2007), https://doi.org/10.1061/9780784409084.

[9] Tareco, H.; Grangeia, C.; Varum, H.; Matias, M. S., ‘A high resolution GPR experiment to characterize the internal structure of a damaged adobe wall’, First Break, 27(8), (2009) 79-84.

[10] Coutinho, R. Q.; Mayne, P. W. (eds.), Geotechnical and Geophysical Site Characterization, CRC Press, Boca Raton (2012), https://doi.org/10.1201/b13251.

[11] Barraca, N.; Almeida, M.; Varum, H.; Matias, M. S., ‘The use of GPR in the rehabilitation of built heritage’, in Near Surface Geoscience 2014 – 20th European Meeting of Environmental and Engineering Geophysics, Athens (2014), https://doi.org/10.3997/2214-4609.20141998.

[12] Neto, M., James Murphy e o Restauro do Mosteiro de Santa Maria da Vitória no Século XIX, Editorial Estampa, Lisboa (1997).

[13] Cosentino, P. L.; Deganello, S., ‘High-resolution microgeo-physics: a fascinating challenge. I. Detection of thin patinas’, Bollettino di Geofisica Teorica e Applicata 44(3-4) (2003) 169-179.

[14] Piro, S.; Negri, S.; Quarta, T. A. M.; Pipan, M.; Forte, E.; Ciminale, M.; Capizzi, P.; Sambuelli, L., ‘Geophysics and cultural heritage: a living field of research for Italian geophysicists’, First Break 33(8) (2015) 43-54.

[15] Cosentino, P. L.; Capizzi, P.; Martorana, R.; Messina, P.; & Schiavone, S., ‘From geophysics to microgeophysics for engineering and cultural heritage’, International Journal of Geophysics (2011) 428412, https://doi.org/10.1155/2011/428412.

[16] Panisova, J.; Fraštia, M.; Wunderlich, T.; Pašteka, R.; Kušnirák, D., ‘Microgravity and ground penetrating radar investigations of subsurface features at the St Catherine’s Monastery, Slovakia’, Archaeological Prospection 20(3) (2013) 163-174 https://doi.org/10.1002/arp.1450.

[17] Castellaro, S.; Imposa, S.; Barone, F.; Chiavetta, F.; Gresta, S., Mulargia, F., ’Georadar and passive seismic survey in the Roman amphitheatre of Catania (Sicily)’, Journal of Cultural Heritage 9(4) (2008) 357-366, https://doi.org/10.1016/j.cul-her.2008.03.004.

[18] Capitani, D.; Di Tullio, V.; Proietti, N., ‘Nuclear magnetic resonance to characterize and monitor cultural heritage’, Progress in Nuclear Magnetic Resonance Spectroscopy 64 (2012) 29-69, https://doi.org/10.1016/j.pnmrs.2011.11.001.

[19] Leucci, G.; Persico, R.; Soldovieri, F., ‘Detection of fractures from GPR data: the case history of the Cathedral of Otranto’, Journal of Geophysics and Engineering 4(4) (2007) 452, https://doi.org/10.1088/1742-2132/4/4/011.

[20] Bavusi, M.; Soldovieri, F.; Piscitelli, S.; Loperte, A.; Vallianatos, F.; Soupios, P., ‘Ground-penetrating radar and microwave tomography to evaluate the crack and joint geometry in historical buildings: some examples from Chania, Crete, Greece’, Near Surface Geophysics 8(5) (2010) 377-387, https://doi.org/10.3997/1873-0604.2010039.

[21] Sass, O.; Viles, H. A., ‘How wet are these walls? Testing a novel technique for measuring moisture in ruined walls’, Journal of Cultural Heritage 7(4) (2006) 257-263, https://doi.org/10.1016/j.culher.2006.08.001.

[22] Sass, O.; Viles H. A., ‘Wetting and drying of masonry walls: 2D-resistivity monitoring of driving rain experiments on historic stonework in Oxford, UK’, Journal of Applied Geophysics 70(1) (2010) 72-83, https://doi.org/10.1016/j.jap-pgeo.2009.11.006.

[23] Chávez, R. E.; Tejero, A.; Cifuentes, G.; Hernández, E.; Aguilar, D., ‘Imaging fractures beneath a residential complex using novel 3-D electrical resistivity arrays’, Journal of Environmental and Engineering Geophysics 20(2) (2015) 219-233, https://doi.org/10.2113/JEEG20.3.219.

[24] Almeida, F.; Barraca, N.; Moura, R.; Matias, M., ‘Odd-even pole-pole array and 3D resistivity surveys in urban and historical areas’, in Near Surface Geoscience 2016-22nd European Meeting of Environmental and Engineering Geophysics (2016), https://doi.org/10.3997/2214-4609.201601965.

[25] Cataldo, R.; De Donno, A.; De Nunzio, G.; Leucci, G.; Nuzzo, L.; Siviero, S., ‘Integrated methods for analysis of deterioration of cultural heritage: the Crypt of Cattedrale di Otranto’, Journal of Cultural Heritage 6(1) (2005) 29-38, https://doi.org/10.1016/j. culher.2004.05.004.

[26] Faella, G.; Frunzio, G.; Guadagnuolo, M.; Donadio, A.; Ferri, L., ‘The church of the Nativity in Bethlehem: Non-destructive tests for the structural knowledge’, Journal of Cultural Heritage 13(4) (2012) e27-e41, https://doi.org/10.1016/j.culher.2012.10.014.

[27] Martinho, E.; Dionísio, A., ‘Main geophysical techniques used for non-destructive evaluation in cultural built heritage: a review’, Journal of Geophysics and Engineering 11(5) (2014) https://doi.org/10.1088/1742-2132/11/5/053001.

[28] Grangeia, C.; Matias, M.; Figueiredo, F.; Hermozilha, H.; Carvalho, P.; Silva, R., ‘A multi-method high-resolution geophysical survey in the Machado de Castro museum, central Portugal’, Journal of Geophysics and Engineering 8(2) (2011) 351-365, https://doi.org/10.1088/1742-2132/8/2/020.

[29] Matias, M. S.; Almeida, F.; Barraca, N., Integrated High Resolution Geophysical Investigation of a Monastery, Lambert Academic Publishing, Beau Bassin (2017).

[30] Matias, M. S.; Almeida, F.; Ribeiro, J.; Moura, R.; Ruivo, J.; Barraca, N., Anatomia de um Mosteiro – Estudo Geofísico do Mosteiro da Batalha, Câmara Municipal da Batalha, Batalha (2017).

[31] Almeida, F.; Moura, R.; Barraca, N.; Costa, C.; Terroso, D.; Matias, M., ‘Caracterização multidisciplinar de eflorescências salinas no Mosteiro da Batalha’, comunicação, Congresso da Reabilitação do Património, Universidade de Aveiro, Aveiro (2017).

[32] Lai, W. W. L.; Dérobert, X.; Annan, P., ‘A review of ground penetrating radar application in civil engineering: A 30-year journey from locating and testing to imaging and diagnosis’, NDT & E International 96 (2017) 58-78, https://doi.org/10.1016/j.ndteint.2017.04.002.

[33] Almeida, C. A. F. D.; Barroca, M. J., História da Arte em Portugal. O Gótico, Editorial Presença, Lisboa (2002).

[34] Murphy, J., Plans Elevations Sections and Views of the Church of Batalha, in the province of Estremadura in Portugal, London (1795).

[35] Annan, A. P.; Cosway, S. W., ‘Ground penetrating radar survey design’, in 5th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems, SAGEE’92, Oak Brook (1992) 329-352, https://doi.org/10.4133/1.2921946.36.

[36] Sandmeier, K. J., ReflexW 2D GPR Data Analysis Module Manual. Sandmeier Geophysical Software Research (2010).

[37] Daniels, J. J., ‘Ground penetrating radar fundamentals’, Prepared as an appendix to a Report to the US EPA, Region V, (2000) 1-21.

Published

2019-11-06

How to Cite

Barraca, N., Matias, M., & Almeida, F. (2019). The ground-penetrating radar (GPR) method in the characterization of the Monastery of Batalha. Conservar Património, 32, 65–78. https://doi.org/10.14568/cp2018050

Issue

Section

Articles