Archaeological chert artifacts from Atapuerca sites (Burgos, Spain): characterization, causes of decay and selection of compatible consolidating products

Authors

  • Ainara Zornoza-Indart Department of Painting, Faculty of Fine Arts, University of the of the Basque Country (UPV/EHU), Barrio Sarriena, s/n, Lejona, 48940, Spain https://orcid.org/0000-0002-1666-6515
  • Paula Lopez-Arce University College London (UCL), Institute for Environmental Design and Engineering (IEDE), The Bartlett, School of Environment, Energy and Resources, Faculty of the Built Environment, 22 Gordon Street, London, WC1H 0QB, United Kingdom; Property Care Association, 11 Ramsay Court Kingfisher Way Hinchingbrooke Business Park, Huntingdon, Cambridgeshire, PE29 6FY, United Kingdom
  • Lucía López-Polín Institut Català de Paleoecologia Humana i Evolució Social (IPHES), Zona Educacional 4, Campus Sescelades Edifici W3, 43007, Tarragona, Spain

DOI:

https://doi.org/10.14568/cp2019037

Keywords:

Archaeological chert artifacts, Consolidation, Nanosilica, Nanolime, Acrylic resin, Ethyl silicate

Abstract

Chert tools from Galería and Gran Dolina Caves, located in the Sierra de Atapuerca site complex (Burgos, Spain), were characterized (macro-visual inspection, mineralogical phases, degree of crystallinity, soluble salts, surface morphology and optical surface roughness) and compared to chert samples collected from the surrounding Atapuerca mountain range. The chert tools were studied to determine their causes of decay and for selecting the most compatible consolidation treatments. It was found that samples solely containing quartz were not significantly altered and required little conservation treatment compared to those that contained quartz and moganite, which were more weathered and powdery, requiring consolidation. The efficacy of the consolidating products traditionally used by conservators (acrylic resin and ethyl silicate) to preserve these chert remains, together with novel nanoparticle-based products (SiO2 and a mixture of SiO2 and Ca(OH)2 nanoparticles) were assessed in this study. Changes produced by these consolidating products in the physical (surface morphology and cohesion) and aesthetic properties of the chert tools were evaluated using non-destructive techniques (peeling test, spectrophotometry and optical surface roughness), followed by destructive techniques, such as SEM and XRD.

 

Received: 2019-10-8
Revised: 2020-4-1
Accepted: 2020-4-9
Online: 2020-6-29
Publication: 2021-2-10

Downloads

Download data is not yet available.

References

[1] Luedtke, B. E., ‘An Archeologist’s guide to Chert and Flint, Archaeological Research Tools’, Institute of Archaeology, University of California, Los Angeles (1992).

[2] Aguirre, E., ‘Atapuerca (Burgos, Northern Spain) - Potential, progress and questions’, CFS Courier Forschungsinstitut Senckenberg, 259 (2007) 111–120.

[3] Ortega, A. I.; Benito-Calvo, A.; Pérez-González, A.; Carbonell, E.; Bermúdez de Castro, J. M.; Arsuaga, J., ‘Atapuerca Karst and its Palaeoanthropological Sites’, Springer, Netherlands (2014).

[4] Carbonell, E.; Esteban, M.; Nájera, A. M. n.; Mosquera, M.; Rodríguez, X. P.; Ollé, A.; Ortega, A. I., ’The Pleistocene site of Gran Dolina, Sierra de Atapuerca, Spain: a history of the archaeological investigations’, Journal of Human Evolution 37 (3–4) (1999) 313-324, https://doi.org/10.1006/jhev.1999.0282.

[5] Rodríguez, J.; Burjachs, F.; Cuenca-Bescós, G.; García, N.; Van der Made, J.; Pérez González, A.; Carbonell, E.,’One million years of cultural evolution in a stable environment at Atapuerca (Burgos, Spain)’, Quaternary Science Reviews 30 (11–12) (2011) 1396-1412, https://doi.org/10.1016/j.quascirev.2010.02.021.

[6] Mosquera, M.; Ollé, A.; Pérez, A.; Rodríguez, X. P.; Vaquero, M.; Vergés, J. M.; Carbonell, E., ‘Valle de las Orquídeas: un yacimiento al aire libre del Pleistoceno Superior en la Sierra de Atapuerca (Burgos)’, Trabajos de Prehistoria 64 (2007) 143-156.

[7] Navazo, M.; Alonso-Alcalde, R.; Benito-Calvo, A.; Díez, J. C.; Pérez-González, A.; Carbonell, E., ‘Hundidero: mis 4 open air neanderthal occupations in Sierra de Atapuerca’, Archaeology, Ethnology and Anthropology of Eurasia 39(4) (2011) 29-41, https://doi.org/10.1016/j.aeae.2012.02.004.

[8] Ortega, A. I.; Juez, L.; Carretero, J. M.; Arsuaga, J.; Pérez-González, A.; Ortega, M. C.; Martínez, I., ‘The Portalón at Cueva Mayor’ In The Early Neolithic in the Iberian Peninsula. Regional and Transregional Components. Proceedings of the XV World Congress, ed. M. Diniz, Archaeopress, Lisbon (2008) 3-9.

[9] Vergès, J. M.; Allué, E.; Angelucci, D. E.; Burjachs, F.; Carrancho, A.; Cebrià, A.; Vaquero, M., ‘Los niveles neolíticos de la cueva de El Mirador (Sierra de Atapuerca, Buegos) nuevos datos sobre la implantación y el desarrollo de la economía agropecuaria en la submeseta norte’ In IV Congreso Del Neolítico Peninsular, ed. M. S. Hernández, J. A. Soler & J. A. López, Alicante (2008) 418-427.

[10] Ollé, A.; Mosquera, M.; Rodríguez, X. P.; de Lombera-Hermida, A.; García-Antón, M. D.; García-Medrano, P.; Carbonell, E., ‘The Early and Middle Pleistocene technological record from Sierra de Atapuerca (Burgos, Spain)’, Quaternary International 295 (2013) 138-167, https://doi.org/10.1016/j.quaint.2011.11.009.

[11] Schmalz, R. F., ‘Flint and the Patination of Flint Artifacts’, Procceding of the Prehistoric Society 26 (1960) 44-49

[12] Hurst, V. J.; Kelly, A. R., ‘Patination of Cultural Flints: Flint artifacts can be dated by cortical changes in mineralogy and texture’, Science 134 (1961) 251-256, https://doi.org/10.1126/science.134.3474.251.

[13] Burroni, D.; Donahue, R. E.; Pollard, A. M.; Mussi, M., ‘The Surface Alteration Features of Flint Artefacts as a Record of Environmental Processes’, Journal of Archaeological Science 29(11) (2002) 1277-1287, https://doi.org/10.1006/jasc.2001.0771.

[14] López-Polín, L.; Gómez, G.; García-Antón, M. D.; Ibáñez, N.; Solé, A.; Guiu, J.; Carbonell, E., ‘La restauración de restos óseos e industria lítica en los yacimientos pleistocenos de la Trinchera del Ferrocarril (Sierra de Atapuerca, Burgos)’, Patina 15 (2008) 33-44.

[15] Font, B.; López-Polín, L.; Ollé, A., ‘Description and characterization of the natural alteration of chert artefacts from Atapuerca (Burgos, Spain), Cansaladeta (Tarragona, Spain) and Orgnac 3 (Ardèche, France)’, Annali dell’Università di Ferrara Museologia Scientifica e Naturalistica 6 (2010) 103-110.

[16] García-Antón, M. D. Morant, N.; Mallol, C., ‘L’approvisionnement en matières premières lithiques au Pléistocène inférieur et moyen dans la Sierra de Atapuerca, Burgos (Espagne)’, L'Anthropologie 106(1) (2002) 41-55, https://doi.org/10.1016/S0003-5521(02)01086-5.

[17] Navazo, M.; Colina, A.; Domínguez-Bella, S.; Benito-Calvo, A., ‘Raw stone material supply for Upper Pleistocene settlements in Sierra de Atapuerca (Burgos, Spain): flint characterization using petrographic and geochemical techniques’, Journal of Archaeological Science 35(7) (2008) 1961-1973, https://doi.org/10.1016/j.jas.2007.12.009

[18] Falguères, C.; Bahain, J.-J.; Bischoff, J. L.; Pérez-González, A.; Ortega, A. I.; Ollé, A.; Arsuaga, J. L., ‘Combined ESR/U-series chronology of Acheulian hominid-bearing layers at Trinchera Galería site, Atapuerca, Spain’, Journal of Human Evolution 65(2) (2013) 168-184, https://doi.org/10.1016/j.jhevol.2013.05.005.

[19] García-Medrano, P.; Cáceres, I.; Ollé, A.; Carbonell, E., ‘The occupational pattern of the Galería site (Atapuerca, Spain): A technological perspective’, Quaternary International 433 (2017) 363-378, https://doi.org/10.1016/j.quaint.2015.11.013

[20] Berger, G. W.; Pérez-González, A.; Carbonell, E.; Arsuaga, J. L.; Bermúdez de Castro, J. M.; Ku, T. L., ‘Luminescence chronology of cave sediments at the Atapuerca paleoanthropological site, Spain’. Journal of Human Evolution 55(2) (2008) 300-311, https://doi.org/10.1016/j.jhevol.2008.02.012

[21] Zornoza-Indart, A.; López-Arce, P.; López-Polín, L., ‘Durability of traditional and new nanoparticle based consolidating products for the treatment of archaeological stone tools: Chert artifacts from Atapuerca sites (Burgos, Spain)’, Journal of Cultural Heritage 24 (2017) 9-21, https://doi.org/10.1016/j.culher.2016.10.019

[22] Wheeler, G., Alkoxysilanes and the Consolidation of Stone, Getty Conservation Institute, Los Angeles (2005).

[23] Zornoza-Indart, A.; Lopez-Arce, P., ‘Silica nanoparticles (SiO2): Influence of relative humidity in stone consolidation’, Journal of Cultural Heritage 18 (2016) 258-270, https://doi.org/10.1016/j.culher.2015.06.002.

[24] Ferreira, A. P.; Delgado, J., ‘Stone consolidation: The role of treatment procedures’, Journal of Cultural Heritage 9(1) (2008) 38-53, https://doi.org/10.1016/j.culher.2007.06.004.

[25] Lopez-Arce, P.; Zornoza-Indart, A., ‘Carbonation acceleration of calcium hydroxide nanoparticles: induced by yeast fermentation’, Applied Physics A 120(4) (2015) 1475-1495, https://doi.org/10.1007/s00339-015-9341-7.

[26] Durnan, N., ‘Limestone’ in Stone Conservation: Principles and Practice, ed. A. Henry, Shaftesbury, Donhead (2006) 161-181.

[27] Grissom, C. A.; Charola, A. E.; Boulton, A.; Mecklenburg, M. F., ‘Evaluation over time of an ethyl silicate consolidant applied to ancient lime plaster’, Studies in conservation 44(2) (1999) 113-120, https://doi.org/10.1179/sic.1999.44.2.113.

[28] Lazzarini, L.; Tabasso, M. L., Il restauro della pietra, CEDAM, Padova (1986).

[29] De Witte, E.; Charola, A. E.; Sherryl, R. P., ‘Preliminary tests on commercial stone consolidants’ In Fifth International Congress on the Deterioration and Conservation of Stone, ed. G. Felix, V. Furlan, Presses Polytechniques Romandes, Lausanne (1985) 709-718.

[30] Thorn, A., ‘The Consolidation and Bonding of Water-Saturated Siliceous Stone With Lithium Silicate A Preliminary Evaluation’ Paper presented at the CCI Symposium. Adhesives and Consolidants for Conservation: Research and Applications, Ottawa (2011).

[31] Scherer, G. W.; Wheeler, G., ‘Silicate Consolidants for Stone’, Key Engineering Materials 391 (2009) 1-25, https://doi.org/10.4028/www.scientific.net/KEM.391.1

[32] Naidu, S.; Liu, C.; Scherer, G. W., ‘Hydroxyapatite-based consolidant and the acceleration of hydrolysis of silicate-based consolidants’, Journal of Cultural Heritage 16(1) (2015) 94-101, https://doi.org/10.1016/j.culher.2014.01.001

[33] ISO. 4287. Geometrical product specifications (GPS)-surface texture: Profile method-terms, definitions and surface texture parameters 4287 Germany (1998).

[34] Drdacky, M.; Lesak, J.; Rescic, S.; Slızkova, Z.; Tiano, P.; Valach, J., ‘Standardization of peeling tests for assessing the cohesion and consolidation characteristics of historic stone surfaces’, Materials and Structures 45 (2012) 505-520, https://doi.org/10.1617/s11527-011-9778-x

[35] ASTM. E313-73. Practice for calculating yellowness and whiteness indices from instrumentally measured color coordinates E313-73 (1993), Conshohocken, PA.: ASTM International.

[36] ISO. 2470-2. Paper, board and pulps–Measurement of diffuse blue reflectance factor (ISO brightness) 2470-2. Geneva, Switzerland (1999).

[37] Sala, R., Introducció d'un model reòlogic de les deformacions microscòpiques per ús en objectes lítics. Primers resultats al Complex del Plistocè Mig de la Sierra de Atapuerca, Universitat de Barcelona, Barcelona (1993).

[38] Bustillo, M. A., ‘Aparicion y significado de la moganita en las rocas de la silice: Una revisión’, Journal of Iberian Geology 28 (2002) 157-166.

[39] García-Guinea, J.; Bustillo, M. A.; Crespo, E.; Finch, A;, Townsend, P. D.; Hole, D. E.; Correcher, V., ‘Spectrally-resolved luminescence of moganite from Mogan (Gran Canaria)’, Conference on Micro-Raman Spectroscopy and Luminescence Studies in the Earth and Planetary Sciences, Mainz, Germany (2009).

[40] Rodgers, K. A.; Cressey, G., ‘The occurrence, detection and significance of moganite among some silica sinters’, Mineralogical Magazine 65 (2001) 157-167, https://doi.org/10.1180/002646101550181.

[41] Heaney, P.; Post, J. E., ‘The widespread distribution of a novel silica polymorph in microcrystalline quartz varieties’, Science 255 (1992) 441-443, https://doi.org/10.1126/science.255.5043.441.

[42] Kingma, K.J.; Hemley, R. J., ‘Raman spectroscopic study of microcrystalline silica’, American Mineralogist 79 (1994) 269-273.

[43] CNR-ICR. NORMAL 20/85. Interventi conservativi: progettazione esecuzione e valutazione preventive (1996). Milan, Italy.

[44] Benavente, D.; Martınez-Verdu, F.; Bernabeu, A.; Viqueira, V.; Fort, R.; García del Cura, M. A.; Ordoñez, S., ‘Influence of surface roughness on color changes in building stones’, Color Research & Application 28(5) (2003) 343-351, https://doi.org/10.1002/col.10178.

[45] Rodrigues, J. D.; Grossi, A., ‘Indicators and ratings for the compatibility assessment of conservation actions’, Journal of Cultural Heritage 8(1) (2007) 32-43, https://doi.org/10.1016/j.culher.2006.04.007.

Downloads

Published

2021-02-10

How to Cite

Zornoza-Indart, A., Lopez-Arce, P., & López-Polín, L. (2021). Archaeological chert artifacts from Atapuerca sites (Burgos, Spain): characterization, causes of decay and selection of compatible consolidating products. Conservar Património, 36, 20–35. https://doi.org/10.14568/cp2019037

Issue

Section

Articles